Absence of Discrete Spectrum in Highly Negative Ions^

Mary Beth Ruskai ${ }^{\dagger}$
The Rockefeller University, New York, NY 10021 USA

Abstract

Let H_{N} be the Hamiltonian for the Coulomb system consisting of N particles of like charge in the field of a fixed point charge Z. We show that if the particles are bosons, then H_{N} has no discrete spectrum when $N \geqq N_{0}=c Z^{2}$ for some constant c. If the particles are fermions, then H_{N} is bounded below uniformly in N. These results can be extended to molecules and to other power law potentials.

I. Introduction

Let H_{N} be the Hamiltonian

$$
\begin{equation*}
H_{N}(W, Z)=-\sum_{j=1}^{N} \Delta_{j}-\sum_{j=1}^{N} Z r_{j}^{-1}+\sum_{j<k} W r_{j k}^{-1} . \tag{1a}
\end{equation*}
$$

When $W=1, H_{N}$ is the Hamiltonian of N charged particles in the field of an infinitely heavy nucleus of charge Z. If these particles are fermions and $Z \geqq N+1$, so that $H_{N}(1, Z)$ is the Hamiltonian for a negative ion, it is known [1-3,18] that H_{N} has only finitely many bound states. However, very little is known about the precise number of bound states. When $N=2$, Hill $[4,5]$ has shown that $H_{2}(1,1)$ which is the Hamiltonian for H^{-}, has precisely one bound state in the sector of natural parity; Grosse and Pittner [6] have shown that H^{-}has precisely three degenerate bound states in the sector of unnatural parity. Hill's results can be extended to show that H^{--}has no bound states [7], but Hill's techniques are unlikely to be suitable for N much larger than 3 or 4 . All other methods known for estimating the number of bound states of multi-particle systems are either very specialized or very weak [8-10].

In this paper we show that for a system of N charged bosons, $H_{N}(W, Z)$ has no discrete spectrum when N is sufficiently large. Then the only possible bound states are eigenvalues imbedded in the continuum. Because our method of proof uses smoothing functions which need not leave a given symmetry subspace invariant,

[^0]
[^0]: * Research supported by the National Science Foundation, MCS78-20455 USA
 \dagger On leave from Department of Mathematics, University of Lowell, Lowell, MA O1854 USA

