Unbounded Derivations Commuting with Compact Group Actions*

F. Goodman¹ and P. E. T. Jorgensen²

1 Department of Mathematics, University of Pennsylvania, Philadelphia, PA, 19104, USA

2 Mathematics Institute, Aarhus University, Ny Munkegade, DK-8000 Aarhus C, Denmark

Abstract. Let δ be a closed * derivation in a C^* algebra \mathfrak{A} which commutes with an ergodic action of a compact group on \mathfrak{A} . Then δ generates a C^* dynamics of \mathfrak{A} . Similar results are obtained for non-ergodic actions on abelian C^* algebras and on the algebra of compact operators.

1. Introduction

In [9] Sakai showed that a non-zero closed * derivation in $C(\mathbb{T})$ commuting with translations is a constant multiple of the derivative. Following this, it was shown in [4, 7] that if G is a locally compact group and δ is a closed * derivation in $C_0(G)$ commuting with left translations by elements of G, then δ is the generator of a C* dynamics (i.e., strongly continuous one-parameter group of * automorphisms) of $C_0(G)$. A like result holds for $C_0(G/H)$ (H a closed sub-group of G), provided that G is either separable or the projective limit of Lie groups. In this note, we assume G is compact and we obtain similar results for an ergodic action of G on an arbitrary C* algebra (Theorem 2.1), and for an arbitrary action of G on an abelian C* algebra (Theorem 3.2), or on the algebra of compact operators (Theorem 4.1).

We refer to [1, 3, 9] for background on unbounded derivations in C* algebras.

2. Ergodic and G-Finite Actions

Before stating our first result we recall a few facts about Banach space representations of compact groups. Let V be a Banach space, G a compact group, and α a strongly continuous representation of G on V. For each $\pi \in \hat{G}$, define $P_{\pi}: V \to V$ by

$$P_{\pi}(x) = \int_{G} \dim(\pi) \operatorname{tr}(\pi(s)) \alpha_{s}(x) ds.$$

^{*} Research supported by N.S.F.