Absolutely Continuous Invariant Measures for One-Parameter Families of One-Dimensional Maps

M. V. Jakobson

Central Scientific-Research Economic Institute, Smolenskii Boulevard, Moscow G-117, USSR

Abstract. Given a one-parameter family $f_{\lambda}(x)$ of maps of the interval [0, 1], we consider the set of parameter values λ for which f_{λ} has an invariant measure absolutely continuous with respect to Lebesgue measure. We show that this set has positive measure, for two classes of maps: i) $f_{\lambda}(x) = \lambda f(x)$ where $0 < \lambda \leq 4$ and f(x) is a function C^3 -near the quadratic map x(1-x), and ii) $f_{\lambda}(x) = \lambda f(x)$ (mod 1) where f is C^3 , f(0) = f(1) = 0 and f has a unique nondegenerate critical point in [0, 1].

0. Introduction

Dynamical systems generated by noninvertible maps of an interval into itself have been intensely studied recently. The most widely considered was the family $f_{\lambda}: x \rightarrow \lambda x(1-x), x \in [0, 1], 0 \le \lambda \le 4$.

It is well-known that if f_{λ} has an attracting periodic orbit $\bar{\alpha} = (\alpha_1, ..., \alpha_n)$ then all probabilisitic f_{λ} -invariant measures are singular with respect to a Lebesgue measure dx, and the iterations $f_{\lambda*}^n dx$ converge in the weak *-topology to the discrete invariant measure supported by $\bar{\alpha}$.

It is probable (but not proved) that this situation is typical from the topological point of view, i.e. for a general one-parameter family of smooth mappings $f_{\lambda}: I \to I$, $\lambda \in \Lambda$, there is an open and dense subset Λ_0 of Λ such that for $\lambda \in \Lambda_0$, the set of limit points for $f_{\lambda*}^n dx$ consists of a finite number of measures supported by periodic attracting orbits.

We show in the present paper that this is not so from the metric point of view. Namely we prove for a certain class of one-parameter families f_{λ} that the set $\Lambda_1 = \{\lambda : f_{\lambda} \text{ has an invariant finite measure } \mu_{\lambda} \text{ absolutely continuous with respect}$

has a positive measure in Λ .

to $dx (\mu_{\lambda} < dx)$

In the classical case $x \to 4x(1-x)$ considered by Ulam and von Neumann in [1], the invariant measure $\mu(dx)$ has density $\varrho(x) = \frac{1}{\pi \sqrt{x(1-x)}}$. In [2] Bunimovič