Absolutely Continuous Invariant Measures for OneParameter Families of One-Dimensional Maps

M. V. Jakobson
Central Scientific-Research Economic Institute, Smolenskii Boulevard, Moscow G-117, USSR

Abstract

Given a one-parameter family $f_{\lambda}(x)$ of maps of the interval [0,1$]$, we consider the set of parameter values λ for which f_{λ} has an invariant measure absolutely continuous with respect to Lebesgue measure. We show that this set has positive measure, for two classes of maps : i) $f_{\lambda}(x)=\lambda f(x)$ where $0<\lambda \leqq 4$ and $f(x)$ is a function C^{3}-near the quadratic map $x(1-x)$, and ii) $f_{\lambda}(x)=\lambda f(x)$ $(\bmod 1)$ where f is $C^{3}, f(0)=f(1)=0$ and f has a unique nondegenerate critical point in $[0,1]$.

0. Introduction

Dynamical systems generated by noninvertible maps of an interval into itself have been intensely studied recently. The most widely considered was the family $f_{\lambda}: x \rightarrow \lambda x(1-x), x \in[0,1], 0 \leqq \lambda \leqq 4$.

It is well-known that if f_{λ} has an attracting periodic orbit $\bar{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ then all probabilisitic f_{λ}-invariant measures are singular with respect to a Lebesgue measure $d x$, and the iterations $f_{\lambda *}^{n} d x$ converge in the weak *-topology to the discrete invariant measure supported by $\bar{\alpha}$.

It is probable (but not proved) that this situation is typical from the topological point of view, i.e. for a general one-parameter family of smooth mappings $f_{\lambda}: I \rightarrow I$, $\lambda \in \Lambda$, there is an open and dense subset Λ_{0} of Λ such that for $\lambda \in \Lambda_{0}$, the set of limit points for $f_{\lambda *}^{n} d x$ consists of a finite number of measures supported by periodic attracting orbits.

We show in the present paper that this is not so from the metric point of view. Namely we prove for a certain class of one-parameter families f_{λ} that the set $\Lambda_{1}=\left\{\lambda: f_{\lambda}\right.$ has an invariant finite measure μ_{λ} absolutely continuous with respect
to $\left.d x\left(\mu_{\lambda}<d x\right)\right\}$
has a positive measure in Λ.
In the classical case $x \rightarrow 4 x(1-x)$ considered by Ulam and von Neumann in [1], the invariant measure $\mu(d x)$ has density $\varrho(x)=\frac{1}{\pi \sqrt{x(1-x)}}$. In [2] Bunimovič

