Tetrahedron Equations and the Relativistic S-Matrix of Straight-Strings in $\mathbf{2}+\mathbf{1}$-Dimensions

A. B. Zamolodchikov
Landau Institute of Theoretical Physics, Vorobyevskoe Shosse, 2, Moscow V-334, USSR

Abstract

The quantum S-matrix theory of straight-strings (infinite onedimensional objects like straight domain walls) in $2+1$-dimensions is considered. The S-matrix is supposed to be "purely elastic" and factorized. The tetrahedron equations (which are the factorization conditions) are investigated for the special "two-colour" model. The relativistic three-string S-matrix, which apparently satisfies this tetrahedron equation, is proposed.

1. Introduction

The progress of the last decade in studying two-dimensional exactly solvable models of quantum field theory and lattice statistical physics was motivated to some extent by using the triangle equations. These equations were first discovered by Yang [1]; they appeared in the problem of non-relativistic $1+1$-dimensional particles with δ-function interaction, as the self-consistency condition for Bethe's ansatz. Analogous (at least formally) relations were derived by Baxter [2], who had investigated the eight-vertex lattice model. These relations restrict the vertex weights and are of great importance for exact solvability. In particular, for the rectangular-lattice model they guarantee the commutativity of transfer-matrices with different values of the anisotropy parameter v. In the case of Baxter's general nonregular lattice \mathscr{L} [3], the triangle relations for the vertex weights ensure the remarkable symmetry of the statistical system (the so-called Z-invariance): the partition function is unchanged under the deformations of the lattice, generated by the arbitrary shifts of the lattice axes. Z-invariant model on the lattice \mathscr{L} is exactly solvable [3] (see also [4]).

Recently Faddeev, Sklyanin, and Takhtadjyan [5, 6] have developed a new general method of studying the exactly solvable models in $1+1$-dimensions - the quantum inverse scattering method. The triangle equations are the significant constituent of this method; they are to be satisfied by the elements of the R-matrix which determine the commutation relations between the elements of the monodromy matrix.

