

© Springer-Verlag 1981

On the Large Order Expansion for the Anharmonic Oscillators

V. R. Figerou*

Département de Physique Mathématique**, U.S.T.L., F-34060 Montpellier Cedex, France

Abstract. Using functional approaches, we investigate the large-K behaviour of the K^{th} coefficient E_K in the perturbation expansion for the ground-state energy E(g) of the generalized anharmonic oscillator X^{2N} with internal O(n)-symmetry. We establish the equivalence between the pure functional approach and the method of Collins-Soper at any order in $\frac{1}{K}$. For that purpose, we first develop an algebraic treatment of perturbation series and prove a theorem on Borel-summable functions. Finally, we compute analytically the 1/K and $1/K^2$ corrections to the leading term for N=2.

I. Introduction

Some years ago, Bender and Wu [1] investigated the large order behaviour of the perturbation expansion of the energy levels of the anharmonic oscillator. More recently, in a series of works initiated by Lipatov [2], functional techniques have been applied to the determination of such behaviours. In the case of the generalized anharmonic oscillator, the quantity of main interest is the ground-state energy

 $E(g) = -\lim_{T \to \infty} \frac{1}{T} \operatorname{Log} \operatorname{Tr} \exp[-TH], \qquad (1.1)$

where

$$H = \frac{1}{2} \sum_{i=1}^{n} p_i^2 + \frac{1}{2} \sum_{i=1}^{n} x_i^2 + g \left(\sum_{i=1}^{n} x_i^2 \right)^N,$$
 (1.2)

and one looks for the large-K behaviour of the coefficients E_K in the asymptotic expansion

 $E(g) = \sum_{K=0}^{\infty} E_K g^K. \tag{1.3}$

^{*} Present address: Department of Physics, The Rockefeller University, New York, NY10021, USA

^{**} Physique Mathématique et Théorique, Equipe de Recherche associée au C.N.R.S.