Commun. Math. Phys. 79, 317-325 (1981)

A Yang-Mills-Higgs Monopole of Charge 2

R. S. Ward

Department of Mathematics, Trinity College, Dublin, Ireland

Abstract. A new static, purely magnetic Yang-Mills-Higgs monopole solution is presented. It is axisymmetric and has a topological charge of 2; the charge is located at a single point.

1. Introduction

This paper is concerned with Yang-Mills-Higgs monopoles which are static and purely magnetic, in the Prasad-Sommerfield limit [1]. This means that we have a Higgs field ϕ and a gauge potential A_j (j = 1, 2, 3) on Euclidean 3-space \mathbb{R}^3 , satisfying the following five requirements.

(i) $\phi \& A_j$ take values in the Lie algebra of SU(2). In other words, ϕ and A_j have the form $\phi = \phi^a \sigma^a$, $A_j = A_j^a \sigma^a$, where σ^a are the Pauli matrices, and where ϕ^a , A_j^a are scalar functions on \mathbb{R}^3 which in some gauge are real-valued. (We shall be allowing SL(2, \mathbb{C})-valued gauge transformations, so $\sigma^a \& A_j^a$ will not be realvalued in every gauge.)

(ii) In some gauge, $\phi \& A_i$ are smooth (say C^{∞}) on \mathbb{R}^3 .

(iii) The Bogomolny equations

$$G^a_{jk} = -\varepsilon_{jk\ell} D_\ell \phi^a$$

are satisfied, where

$$G^{a}_{jk} = \partial_{j}A^{a}_{k} - \partial_{k}A^{a}_{j} + \kappa \varepsilon^{abc}A^{b}_{j}A^{c}_{k},$$

 $D_{i}\phi^{a} = \partial_{i}\phi^{a} + \kappa \varepsilon^{abc}A^{b}_{i}\phi^{c},$

 κ being some real number (the coupling constant). (iv) The norm $\|\phi\| = (\phi^a \phi^a)^{1/2}$ of the Higgs field has the asymptotic behaviour

$$\|\phi\| = 1 - m/r + O(r^{-2})$$
 as $r \to \infty$,

where *r* is the Euclidean distance from the origin in \mathbb{R}^3 , and *m* is some real number. (v) The energy

 $E = \int (\frac{1}{4} \| G \|^2 + \frac{1}{2} \| D\phi \|^2) d^3x$ is finite. Here $\| G \|^2 = G^a_{ik} G^a_{ik}$ and $\| D\phi \|^2 = (D_i \phi^a) (D_i \phi^a).$