A Commutativity Theorem of Partial Differential Operators

Gui-zhang Tu
Computing Centre of Chinese Academy of Sciences, Beijing, China

Abstract

Let $u=u(x, t)$ be a function of x and t, and $u_{i}=\mathscr{D}^{i} u, \mathscr{D}=d / d x$, $i=0,1,2, \ldots$, be its derivatives with respect to x. Denote by \mathbf{W}_{n} the set $\left\{f \mid f=f\left(u, u_{1}, \ldots, u_{n}\right),\left(\partial / \partial u_{n}\right) f \neq 0\right\}$, where $f\left(u, \ldots, u_{n}\right)$ are polynomials of u_{i} with constant coefficients. To any $f \in \mathbf{W}=\bigcup_{n=2}^{\infty} \mathbf{W}_{n}$, we relate it with an operator $\mathscr{U}(f)=\sum_{i \geqq 0}\left(\mathscr{D}^{i} f\right) \partial / \partial u_{i}$. In this paper we prove that: $\mathscr{U}(f)$ commutes with $\mathscr{U}(g)$ if they commute respectively with $\mathscr{U}(h)$, provided $f, g, h \in \mathbf{W}$. Relating to this commutativity theorem, we prove that, if an evolution equation $u_{t}=f\left(u, \ldots, u_{n}\right)$ possesses nontrivial symmetries (or conservation laws for a class of polynomials f), then $f=C u_{n}+f_{1}\left(u, \ldots, u_{r}\right)$, where $C=$ const, and $r<n$. In the end of this paper, we state a related open problem whose solution would be of much value to the theory of soliton.

1. Introduction

The soliton [1], being a particle-like solution of the nonlinear wave equation, has been now applied widely in various fields of physics. In the recent years, a number of interesting mathematical problems have arisen in the study of soliton, one of them is, among other things, the commutativity of differential operators [2,3]. Let $\mathscr{A}=a_{0} \mathscr{D}^{n}+\ldots+a_{n-1} \mathscr{D}+a_{n}, a_{0} \neq 0, \mathscr{D}=d / d x$ be a differential operator, and $\mathbf{C}(\mathscr{A})$ be the set of all linear operators which commute with \mathscr{A}. A pronounced results [4] is the fact that $\mathbf{C}(\mathscr{A})$ is a commutative ring. In this paper we established a similar result concerning the partial differential operators $\mathscr{U}(f)=\sum_{i \geq 0}(\mathscr{D} f) \partial / \partial u_{i}$, where $f=f\left(u, \ldots, u_{n}\right)$ are polynomials of $u_{i}=\mathscr{D}^{i} u$ with constant coefficients, and $u=u(x, t)$ is a sufficiently smooth function of x and t. We discuss further the application of this result to the study of symmetries and conservation laws of nonlinear evolution equations.

