A Commutativity Theorem of Partial Differential Operators

Gui-zhang Tu

Computing Centre of Chinese Academy of Sciences, Beijing, China

Abstract. Let u = u(x, t) be a function of x and t, and $u_i = \mathcal{D}^i u$, $\mathcal{D} = d/dx$, i = 0, 1, 2, ..., be its derivatives with respect to x. Denote by \mathbf{W}_n the set $\{f | f = f(u, u_1, ..., u_n), (\partial/\partial u_n) f \neq 0\}$, where $f(u, ..., u_n)$ are polynomials of u_i with constant coefficients. To any $f \in \mathbf{W} = \bigcup_{n=2}^{\infty} \mathbf{W}_n$, we relate it with an operator $\mathcal{U}(f) = \sum_{i \ge 0} (\mathcal{D}^i f) \partial/\partial u_i$. In this paper we prove that : $\mathcal{U}(f)$ commutes with $\mathcal{U}(g)$ if they commute respectively with $\mathcal{U}(h)$, provided $f, g, h \in \mathbf{W}$. Relating to this commutativity theorem, we prove that, if an evolution equation $u_t = f(u, ..., u_n)$ possesses nontrivial symmetries (or conservation laws for a class of polynomials f), then $f = Cu_n + f_1(u, ..., u_n)$, where C = const, and r < n. In the end of this paper, we state a related open problem whose solution would be of much value to the theory of soliton.

1. Introduction

equations.

The soliton [1], being a particle-like solution of the nonlinear wave equation, has been now applied widely in various fields of physics. In the recent years, a number of interesting mathematical problems have arisen in the study of soliton, one of them is, among other things, the commutativity of differential operators [2, 3]. Let $\mathscr{A} = a_0 \mathscr{D}^n + \ldots + a_{n-1} \mathscr{D} + a_n$, $a_0 \neq 0$, $\mathscr{D} = d/dx$ be a differential operator, and $\mathbb{C}(\mathscr{A})$ be the set of all linear operators which commute with \mathscr{A} . A pronounced results [4] is the fact that $\mathbb{C}(\mathscr{A})$ is a commutative ring. In this paper we established a similar result concerning the partial differential operators $\mathscr{U}(f) = \sum_{i \geq 0} (\mathscr{D}^i f) \partial / \partial u_i$, where $f = f(u, \ldots, u_n)$ are polynomials of $u_i = \mathscr{D}^i u$ with constant coefficients, and u = u(x, t) is a sufficiently smooth function of x and t. We discuss further the application of this result to the study of symmetries and conservation laws of nonlinear evolution