© by Springer-Verlag 1980

On the Families of Gibbs Semigroups

V. A. Zagrebnov

Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, SU-141980 Dubna, USSR

Abstract. The families of Gibbs semigroups with generators from conveniently bounded monotonous families of self-adjoint operators are proved to be compact in the trace-norm topology.

1. Introduction

Let \mathscr{H} be a separable Hilbert space and $\mathscr{C}_p(\mathscr{H})$ be the Banach space of compact operators on \mathscr{H} with finite p-norm:

$$\|A\|_p = \left(\sum_{n=1}^{\infty} (\lambda_n(A))^p\right)^{1/p}, \quad 1 \leq p < \infty.$$

Here $\{\lambda_n(A)\}_{n=1}^{\infty}$ are the singular values of the operator $A \in \mathcal{C}_p(\mathcal{H})$. Then one has: $\mathcal{C}_1(\mathcal{H})$ (trace-class) $\subset \mathcal{C}_2(\mathcal{H})$ (Hilbert-Schmidt operators) $\subset \ldots \subset \mathcal{C}_p(\mathcal{H}) \subset \ldots \subset \mathcal{C}_\infty(\mathcal{H})$ (compact operators) $\subset \mathcal{L}(\mathcal{H})$ (bounded operators) [1].

Strongly continuous one-parameter self-adjoint semigroups $\{Q(t)\}$, $Q:\mathbb{R}^1_+ \cup \{0\} \to \mathcal{L}(\mathcal{H})$, with the values in $\mathcal{C}_1(\mathcal{H})$ for $t \in \mathbb{R}^1_+$, arise naturally in quantum statistical mechanics. Usually they are called *Gibbs semigroups* [2, 3]. However, in some cases they are not to be self-adjoint (e.g. for $t \in \mathbb{C}_+$, the complex right half-plane $\{z \in \mathbb{C} : \operatorname{Re} z > 0\}$, or see Example 1). Hence, more relevant is the following

Definition 1. A strongly continuous semigroup Q(t) in a separable Hilbert space is called a Gibbs semigroup if $Q(t): \mathbb{R}^1_+ \to \mathcal{C}_1(\mathcal{H})$.

Every strongly continuous semigroup Q(t) is known (see e.g. [4, X.8] or [5, IX, § 1]) to be generated by a closed densely defined quasi-*m*-accretive operator T (semigroup generator) and has the form: $Q(t) = \exp(-tT)$.

Example 1. Quasi-m-accretive generators arise in perturbation theory of Gibbs semigroups [3, 6–8]. Let T be a positive generator of Gibbs semigroup. Suppose that U is a symmetric T-bounded operator with T-bound b < 1, i.e.