Commun. Math. Phys. 75, 43-50 (1980)

© by Springer-Verlag 1980

Abelian Faces of State Spaces of C*-Algebras

C. J. K. Batty

Department of Mathematics, University of Edinburgh, Edinburgh EH9 3JZ, Scotland

Abstract. Let F be a closed face of the weak* compact convex state space of a unital C^* -algebra A. The class of F-abelian states, introduced earlier by the author, is studied further. It is shown (without any restriction on A or F) that F is a Choquet simplex if and only if every state in F is F-abelian, and that it is sufficient for this that every pure state in F is F-abelian. As a corollary, it is deduced that an arbitrary C^* -dynamical system (A, G, α) is G-abelian if and only if every ergodic state is weakly clustering. Nevertheless the set of all F-abelian (or even G-abelian) states is not necessarily weak* compact.

1. Introduction

In the algebraic model of quantum statistical mechanics, decompositions of the invariant states of a C^* -dynamical system (A,G,α) into ergodic states have become important [5]. Particular interest has centered on the question of whether the weak* compact convex set $S_G(A)$ of invariant states forms a Choquet simplex. Lanford and Ruelle [11] showed that this is the case if every invariant state ϕ is G-abelian in the sense that the restriction of $\pi_{\phi}(A)''$ to the subspace \mathcal{K}_{ϕ}^G of $u_{\phi}(G)$ -invariant vectors in \mathcal{H}_{ϕ} is an abelian von Neumann algebra [where $(\mathcal{H}_{\phi}, \pi_{\phi}, u_{\phi})$ is the covariant representation of (A, G, α) associated with ϕ]. (This fact was already implicit in [10].) The converse of this result was subsequently obtained by Dang-Ngoc and Ledrappier [7]. Meanwhile it had also been established that for an ergodic state ϕ , G-abelianness is equivalent to the "weak cluster property", namely

$$\inf\{|\phi(a'b) - \phi(a)\phi(b)|\} = 0$$

for all a and b in A, where the infimum is taken over all a' in the convex hull of the G-orbit of a. This raised the question whether every invariant state is G-abelian if every ergodic state is weakly clustering. Dang-Ngoc [6] used direct integral theory to establish this when A is separable.

Recently the present author [4], interested in the class $S_0(A, \alpha)$ of ground states associated with a (strongly continuous) one-parameter C^* -dynamical system