Commun. Math. Phys. 74, 129-140 (1980)

Group-Theoretical Interpretation of the Korteweg-de Vries Type Equations

F. A. Berezin and A. M. Perelomov

Institute of Theoretical and Experimental Physics, SU-117259 Moscow, USSR

Abstract. The Korteweg-de Vries equation is studied within the grouptheoretical framework. Analogous equations are obtained for which the manydimensional Schrödinger equation (with nonlocal potential) plays the same role as the one-dimensional Schrödinger equation does in the theory of the Korteweg-de Vries equation.

1. Introduction

Let \mathscr{G} be an arbitrary Lie algebra, e_i be a basis in \mathscr{G} , C_{ij}^k be the corresponding structure constants, $\tilde{\mathscr{G}}$ be the space of linear functionals on \mathscr{G} . Denote as \tilde{e}^i the basis in $\tilde{\mathscr{G}}$ which is dual to e_i and as x_i the coordinates in $\tilde{\mathscr{G}}$ with respect to the basis \tilde{e}^i .

In the space \mathscr{F} of infinitely-differentiable functions on $\widetilde{\mathscr{G}}$ consider the operation

$$[f,g]_{\mathbf{P},\mathbf{B},} \equiv \{f,g\} = \sum C^i_{jk} x_i \partial^i f \cdot \partial^k g, \qquad \partial^j = \partial/\partial x_j.$$
(1)

It was shown in [1] (see also [2-4]) that the operation (1) turns the space of the infinitely-differentiable functions on $\tilde{\mathscr{G}}$ into the Lie algebra. It is natural to call it the Poisson bracket algebra associated with the Lie algebra \mathscr{G} .

Let $x = \sum x_i \tilde{e}^i \in \tilde{\mathscr{G}}, y = \sum y^i e_i \in \mathscr{G},$

$$\langle x, y \rangle = \sum x_i y^i \,. \tag{2}$$

To each function $f(x) \in \mathscr{F}$ and to each $x \in \widetilde{\mathscr{G}}$ the element $\nabla f(x) \in \mathscr{G}$ is put into correspondence according to the relation

$$\left. \frac{d}{dt} f(x+ty) \right|_{t=0} = \langle y, \nabla f \rangle = \sum y_i \partial^i f, \quad y \in \tilde{\mathscr{G}}.$$
(3)

With the use of the mapping V the Poisson bracket (1) may be rewritten in the coordinate-independent form

$$\{f(x), g(x)\} = \langle x, [\nabla f, \nabla g] \rangle, \tag{4}$$

where $[\nabla f(x), \nabla g(x)]$ stands for the commutator in \mathcal{G} .