Note

The Operators Governing Quantum Fluctuations of Yang-Mills Multi-Instantons on S^4 and Their Seeley Coefficients

M. Daniel

Theory Division, CERN, CH-1211 Geneva, Switzerland

Abstract. We give explicit expressions for the Seeley coefficients of the fluctuation operator and the operator that appears in the Faddeev-Popov determinant, which arise in the calculation of quantum fluctuations around Yang-Mills multi-instantons.

In the calculation of quantum fluctuations around multi-instanton configurations it is of interest to know the Seeley coefficients for the fluctuation, and the gauge fixing operators [1]. In this note we shall give explicit expressions for these coefficients.

We work on S^4 , the one-point compactification of \mathbb{R}^4 . Let \Box be a second order, self-adjoint, non-negative elliptic operator on S^4 . Then it is well known [2] that the series

$$h_t(\Box) = \sum_{\lambda} e^{-t\lambda}$$

converges for any t>0. The summation extends over all eigenvalues, λ , of \Box with the appropriate multiplicities. Furthermore, $h_i(\Box)$ has an asymptotic expansion

$$h_t(\Box) \equiv \operatorname{Tr} e^{-t\Box} \sim t^{-2} \psi_2(\Box) + t^{-1} \psi_1(\Box) + \psi_0(\Box) + O(t^{\delta}), \delta > 0$$

for $t \downarrow 0$. The $\psi_k(\Box)$'s are known as the Seeley coefficients of \Box . Moreover each $\psi_k(\Box)$ can be expressed as an integral over S^4 of a certain measure $\psi_k(x|\Box)$ dvol. $\psi_k(x|\Box)$ depends polynomially on the coefficients of \Box and their derivatives. They can be expressed in terms of curvature invariants. In fact, the above asymptotic expansion is a consequence of a local expansion. Indeed, if $K_t(x, y)$ is the kernel of the operator $e^{-t\Box}$ then

$$K_t(x,x) \sim t^{-2} \psi_2(x|\Box) + t^{-1} \psi_1(x|\Box) + \psi_0(x|\Box) + O(t^{\delta}).$$

From this it also follows that

 $\hat{\psi}_k(x|\lambda \Box) = \lambda^{-k} \psi_k(x|\Box), \quad \lambda \in \mathbb{R}^+, \quad k = 0, 1, 2.$