Boundedness of Total Cross-Sections in Potential Scattering. II

A. Martin

CERN, Geneva, Switzerland

Abstract. If, in addition to the condition
$\frac{1}{(4 \pi)^{2}} \int d^{3} x d^{3} x^{\prime} \frac{|V(x)|\left|V\left(x^{\prime}\right)\right|}{\left|x-x^{\prime}\right|^{2}}<1$
in units where $2 M / \hbar^{2}=1$, which guarantees that the total cross-section averaged over incident directions is finite, we have also
$\frac{1}{(4 \pi)} \int d^{3} x d^{3} x^{\prime} \frac{|V(x)|\left|V\left(x^{\prime}\right)\right|}{\left|x-x^{\prime}\right|}$
finite, the total cross-section is finite for all energies and all directions of the incident beam.

We have recently shown, in a paper bearing the same title [1], that if the quantity

$$
\begin{equation*}
I=\frac{1}{(4 \pi)^{2}} \int d^{3} x d^{3} x^{\prime} \frac{|V(x)|\left|V\left(x^{\prime}\right)\right|}{\left|x-x^{\prime}\right|^{2}} \tag{1}
\end{equation*}
$$

is such that

$$
\begin{equation*}
I<1 \tag{2}
\end{equation*}
$$

in units where $2 M / \hbar^{2}=1, M$ being the mass of the particle scattered by the potential V, the total cross-section averaged over angles

$$
\begin{equation*}
\bar{\sigma}_{T}(k)=\int \frac{d \Omega_{k}}{4 \pi} \sigma_{T}(\mathbf{k}) \tag{3}
\end{equation*}
$$

is finite. More precisely

$$
\begin{equation*}
\bar{\sigma}_{T}(k)<\frac{4 \pi}{k^{2}} \frac{I}{(1-\sqrt{I})^{2}} \tag{4}
\end{equation*}
$$

