Constellations and Projective Classical Groups

H. Bacry
Centre de Physique Théorique, Section 2, CNRS Marseille
Faculté des Sciences, Luminy, F-13288 Marseille, France

Abstract

The constellation concept is recalled (geometrical description of a ray in a vector space $)$. The groups $\operatorname{PO}(n+1, \mathbb{C})$ or $P \operatorname{Sp}(n+1, \mathbb{C})$ are shown to preserve "harmonic conjugation" between two constellations. The action of the Lorentz subgroup and its rotation subgroup is described. Finally, a theorem concerning Clebsch-Gordan product of constellations is proved.

Introduction

The concept of constellation has been introduced a few years ago [1] as a convenient geometrical tool to classify orbits ${ }^{1}$ of the rotation group $\mathrm{SO}(3)$ acting on states of $\operatorname{spin} \frac{n}{2}$, i.e. on rays of the $(n+1)$-dimensional Hilbert space or the projective space $P_{n}(\mathbb{C})$. Each state of $\operatorname{spin} \frac{n}{2}$ can be represented by a constellation of order n on the sphere S^{2}, that is by a set of n points - not necessarily distinct - on S^{2} (this generalizes the well known property valid for $n=1$).

Constellations ${ }^{2}$ on S^{2} have many applications [1-6], the sphere S^{2} having various interpretations, namely $P_{1}(\mathbb{C})$ or Riemann sphere, the Poincaré sphere [7, 2] (set of polarization states of an electromagnetic plane wave), the set of polarization states of the electron, the Bloch sphere $[8,2,6]$ or the celestial sphere itself for which the word constellation is self justified.

According to the Klein Erlangen programm [9], the geometry of constellations must involve some group. Obviously for the spin states the group is the rotation group $\mathrm{SO}(3)$. [The action of $\mathrm{SO}(3)$ on S^{2} is the trivial action.] For the

[^0]
[^0]: 1 A mistake has been found in this classification by Michel (private communication). The results of reference 1 must be modified as follows: the orbit $\mathrm{SO}(3) / T$ is present in all representations of integral spin except spins 0,1 , and 3 . The mistake was due to the fact that I forgot to take into account the possibility of interlacing octahedrons and tetrahedrons having T as a symmetry group
 2 The word constellation has been suggested by A. Grossmann and appeared for the first time in [2]

