Commun. Math. Phys. 71, 1-28 (1980)

Equilibrium States of Gravitational Systems

Heide Narnhofer¹ and Geoffrey L. Sewell²

¹ Institut für Theoretische Physik, Universität Wien, Wien, Austria

² Department of Physics, Queen Mary College, London, England

Abstract. We formulate the equilibrium correlation functions for local observables of an assembly of non-relativistic, neutral gravitating fermions in the limit where the number of particles becomes infinite, and in a scaling where the region Ω , to which they are confined, remains fixed. We show that these correlation functions correspond, in the limit concerned, to states on the discrete tensor product $\bigotimes_{x\in\Omega} \mathscr{A}_x$, where the \mathscr{A}_x 's are copies of the gauge invariant C*-algebra \mathscr{A} of the CAR over $L^2(\mathbb{R}^3)$. The equilibrium states themselves are then given by $\bigotimes_{x\in\Omega} \overline{\omega}_{\varrho_0(x)}$, where $\overline{\omega}_{\varrho}$ is the Gibbs state on \mathscr{A} for an infinitely extended ideal Fermi gas at density ϱ , and where ϱ_0 is the normalised density function that minimises the Thomas-Fermi functional, obtained in [2], governing the equilibrium thermodynamics of the system.

1. Introduction

The thermodynamical limiting behaviour of a non-relativistic assembly of N neutral, gravitating fermions of one species, confined to a suitably regular bounded three-dimensional domain Ω , is not of the usual type, since the internal energy, temperature and volume of the system scale like $N^{7/3}$, $N^{4/3}$ and N^{-1} , respectively, as $N \to \infty$ [1–4]. The system also possesses simple properties of scale invariance. In the particular scaling where the domain Ω and the temperature are fixed, while the particle mass and gravitational constant become proportional to $N^{2/3}$ and N^{-1} , respectively, the specific free energy tends, as $N \to \infty$, to the minimum value of the Thomas-Fermi functional Φ_0 on the bounded probability densities on Ω , given by the formula

$$\Phi_{0}(\varrho) = \int_{\Omega} d^{3}x \varphi_{0}(\varrho(x)) - \frac{1}{2} \int_{\Omega^{2}} d^{3}x d^{3}y \frac{\varrho(x)\varrho(y)}{|x-y|},$$
(1.1)

where $\varphi_0(\varrho)$ is the equilibrium free energy density of an ideal Fermi gas at density ϱ and at the given temperature, *T*. According to a numerical solution of the resultant