Group Duality and the Kubo-Martin-Schwinger Condition

D. Kastler ${ }^{1}$ and M. Takesaki ${ }^{2 \star \star \star}$
Centre de Physique Théorique du CNRS II, Marseille-Luminy, Marseille, France
${ }^{1}$ Département de Physique, UER Scientifique de Marseille-Luminy, Marseille, France
${ }^{2}$ Département de Mathématiques, UER Scientifique de Marseille-Luminy, Marseille, France

Abstract

We consider clustering G-invariant states of a C^{*}-algebra \mathfrak{A} endowed with an action of a locally compact abelian group G. Denoting as usual by $F_{A B}, G_{A B}$, the corresponding two-point functions, we give criteria for the fulfillment of the KMS condition (w.r.t. some one-parameter subgroup of G) based upon the existence of a closable map T such that $T F_{A B}=G_{A B}$ for all $A, B \in \mathfrak{N}$. Closability is either in $L^{\infty}(G), B(G)$, or $\mathscr{C}_{\infty}(G)$, according to clustering assumptions. Our criteria originate from the combination of duality results for the group G (phrased in terms of functions systems), with density results for the two-point functions.

1. Introduction

The so-called Kubo-Martin-Schwinger (KMS) condition plays an important role both in physics, where it is the modern expression of the "Gibbs structure" (independant of the thermodynamic limit) [1] and in the theory of von Neumann algebras where separating normal states possess this property w.r.t. their "modular automorphism groups" [2]. With $\mathfrak{A l}$ a C^{*}-algebra and $t \rightarrow \alpha_{t}$ a one-parameter automorphism group of \mathfrak{A}, a state ω is called β-KMS for α whenever, to each pair $A, B \in \mathfrak{U}$, there is a function f of the complex variable, continuous and bounded in the strip $0 \leqq \operatorname{Im} z \leqq \beta$, holomorphic in its interior, with boundary values

$$
\left\{\begin{array}{l}
F_{A B}(t)=\omega\left(B \alpha_{t}(A)\right)=f(t) \tag{1.1}\\
G_{A B}(t)=\omega\left(a_{t}(A) B\right)=f(\beta t+i), \quad t \in \mathbb{R} .
\end{array}\right.
$$

This condition can alternatively be stated as follows in terms of Fourier transforms (tempered distributions)

$$
\begin{equation*}
\hat{F}_{A B}(p)=e^{-\beta p} \hat{G}_{A B}(p), \quad p \in \mathbb{R} . \tag{1.2}
\end{equation*}
$$

[^0]
[^0]: * Permanent address: Department of Mathematics, UCLA, Hilgard Avenue, Los Angeles, California, USA
 ** Supported in part by the National Science Foundation

