On the Fluid-Dynamical Approximation to the Boltzmann Equation at the Level of the Navier-Stokes Equation

Shuichi Kawashima, Akitaka Matsumura, and Takaaki Nishida

Department of Applied Mathematics and Physics, Kyoto University, Kyoto 606, Japan

Abstract. The compressible and heat-conductive Navier-Stokes equation obtained as the second approximation of the formal Chapman-Enskog expansion is investigated on its relations to the original nonlinear Boltzmann equation and also to the incompressible Navier-Stokes equation. The solutions of the Boltzmann equation and the incompressible Navier-Stokes equation for small initial data are proved to be asymptotically equivalent (mod decay rate $t^{-5/4}$) as $t \to +\infty$ to that of the compressible Navier-Stokes equation for the corresponding initial data.

1. Introduction

The nonlinear Boltzmann equation for a rarefied simple gas is given in the form

$$F_t + v^j F_{x_j} = \frac{1}{\varepsilon} Q(F, F) \tag{1.1}$$

where $t \ge 0$: time, $x \in \mathbb{R}^3$: physical space, $v \in \mathbb{R}^3$: velocity space, ε : mean free path, F = F(t, x, v) is the mass density distribution function and Q represents the quadratic collision operator. Here and in what follows, we use the summation convention when we are not confused. Let us introduce the fluid-dynamical quantities as follows:

mass density:	$\varrho \equiv \int F(t, x, v) dv ,$
fluid flow velocity:	$u^i \equiv \frac{1}{\varrho} \int v^i F(t, x, v) dv ,$
momentum:	$m^i \equiv \varrho u^i$,
pressure tensor:	$P^{ij} \equiv \int c^i c^j F(t, x, v) dv ,$
pressure :	$p \equiv \frac{1}{3} P^{kk},$
viscous term:	$p^{ij} \equiv P^{ij} - p\delta^{ij},$
heat flow vector:	$q^i \equiv \frac{1}{2} \int c^i c ^2 F(t, x, v) dv ,$