The Quasi-Classical Limit of Quantum Scattering Theory

Kenji Yajima*

Mathematical Research Institute, ETH-Zürich, Switzerland, and Department of Mathematics, University of Tokyo, Tokyo, Japan**

Abstract. We study the quasi-classical limit of the quantum mechanical scattering operator for non-relativistic simple scattering system. The connection between the quantum mechanical and classical mechanical scattering theories is obtained by considering the asymptotic behavior as $\hbar \to 0$ of the quantum mechanical scattering operator on the state $\exp(-ip \cdot a/\hbar)f(p)$ in the momentum representation.

Introduction

Let us consider the Schrödinger operator

$$H^{h} = -\frac{\hbar^{2}}{2m}\Delta + V(x), \quad \Delta = \frac{\partial^{2}}{\partial x_{1}^{2}} + \dots + \frac{\partial^{2}}{\partial x_{1}^{2}}$$
(0.1)

in the Hilbert space $\mathscr{H} = L^2(\mathbb{R}^n)$ and let $H_0^h = -\frac{\hbar^2}{2m}\Delta$. Here $\hbar = \frac{\hbar}{2\pi}$ and h is the small positive parameter called Planck's constant. We assume the potential V(x) to satisfy the following condition.

Assumption (A). (1) V(x) is a real valued infinitely differentiable function on \mathbb{R}^n . (2) For any multi-index α , there exist constants $m(\alpha) > |\alpha| + 1$ and $C_{\alpha} > 0$ such that

$$\left| \left(\frac{\partial}{\partial x} \right)^{\alpha} V(x) \right| \leq C_{\alpha} (1 + |x|)^{-m(\alpha)}.$$

Under this condition H_0^h and H^h are self-adjoint operators with the domain $\mathscr{D}(H_0^h) = \mathscr{D}(H^h) = H^2(\mathbb{R}^n) =$ the Sobolev space of order 2. Furthermore it is well known that the wave operators W_{\pm}^h defined as

$$W^{h}_{\pm} = \underset{t \to \pm \infty}{\mathrm{s}} - \lim_{t \to \pm \infty} e^{itH^{h/\hbar}} e^{-itH^{h/\hbar}_{\mathrm{O}}}$$

exist and are complete:

^{*} Partially supported by Fûjû-kai Foundation and Sakkô-kai Foundation

^{**} Current address