Boundedness of Total Cross-Sections in Potential Scattering

A. Martin
CERN, Geneva, Switzerland

Abstract

If a spherically symmetric potential belongs to the Rollnik class, i.e., if $$
I=\frac{1}{(4 \pi)^{2}} \int \frac{|V(x)|\left|V\left(x^{\prime}\right)\right|}{\left|x-x^{\prime}\right|^{2}} d^{3} x d^{3} x^{\prime}
$$ is finite, the total cross-section is finite, and an explicit bound on this quantity can be given in terms of I. We also investigate the case of non-spherically symmetric potentials, and show that if I is less than unity, the total cross-section averaged over the directions of the incident beam at a given energy is finite.

1. Introduction

Recently the question of boundedness of total cross-sections in potential scattering has been re-examined by Amrein and Pearson [1]. These authors have shown that if one can be satisfied by statements of the form :"the cross-section is finite for almost all energies" it is no longer necessary to assume local regularity of the potential as was done in some previous work on the subject [2]. Crudely speaking, all the authors $[1,2]$ find that the cross-sections are finite if the potential decreases sonewhat faster than $|x|^{-2}$ at large distances (in the case of three space dimensions).

Here we want to use a method which, in its essence, is not new, and was applied 15 years ago to get bounds on the scattering amplitude itself [3]. This method is inspired by the work of Froissart to obtain bounds on elementary particle scattering amplitudes [4]. The general idea is that the partial wave amplitudes and crosssections for small angular momentum can be bounded by unitarity, while for large angular momentum the Born approximation (or nearest singularity contribution in the case of elementary particles!) gives a reasonable estimate.

It is not very difficult to see that the total cross-section, for spherically symmetric potentials, calculated in the Born approximation, will be finite at all energies, except possibly at threshold if the potential belongs to the Rollnik class [5], such that

$$
\begin{equation*}
I=\frac{1}{(4 \pi)^{2}} \int \frac{|V(x)|\left|V\left(x^{\prime}\right)\right|}{\left|x-x^{\prime}\right|^{2}} d^{3} x d^{3} x^{\prime} \tag{1.1}
\end{equation*}
$$

