Shift Automorphisms in the Hénon Mapping

R. Devaney* and Z. Nitecki
Department of Mathematics, Tufts University, Medford, Massachusetts 02155, USA

Abstract

We investigate the global behavior of the quadratic diffeomorphism of the plane given by $H(x, y)=\left(1+y-A x^{2}, B x\right)$. Numerical work by Hénon, Curry, and Feit indicate that, for certain values of the parameters, this mapping admits a "strange attractor". Here we show that, for A small enough, all points in the plane eventually move to infinity under iteration of H. On the other hand, when A is large enough, the nonwandering set of H is topologically conjugate to the shift automorphism on two symbols.

Several numerical studies have recently appeared $[3,4,7,8]$ on the dynamics of the diffeomorphisms of the plane

$$
H(X, Y)=\left(1+Y-A X^{2}, B X\right) .
$$

Interest in these maps $[12,14,5]$ has been prompted by Hénon's numerical evidence [8] for a "strange attractor" when $A=1.4, B=0.3$. Feit [4] has shown, for $A>0$ and $0<B<1$, that the non-wandering set $\Omega(H)$ is contained in a compact set, and that all points outside this set escape to infinity. Curry [3] has shown that, for Hénon's values of the parameters, one of the fixed points has a topologically transverse homoclinic orbit, and hence that there is a horseshoe embedded in the dynamics of the map.

The present note is intended to clarify the behavior of the mapping H for parameter values far from those where "strange attractors" have been observed. Hénon and Feit have noted that for $B=0.3$ and A outside a certain interval (roughly $[-0.12,2.67]$) no attractors are observed; numerically, all points seem to escape to infinity. We exhibit, for any $B \neq 0$, a pair of A values, $A_{0}<0<A_{2}$, such that the non-wandering set $\Omega(H)$ is empty for $A<A_{0}$, but for $A>A_{2}, \Omega(H)$ is the zero-dimensional basic set obtained from Smale's horseshoe construction [9, 11, 13]. We begin by rewriting the map in a more convenient form; then we establish Feit's result (for all $A, B \neq 0$) in a version more suited to our purposes, by

[^0]
[^0]: * Partially supported by NSF Grant MCS 77-00430

