On the Cook-Kuroda Criterion in Scattering Theory*

Tosio Kato
Department of Mathematics, University of California, Berkeley, California 94720, USA

Abstract

A new criterion of the Cook-Kuroda type for the existence of the wave operator in the two-space scattering theory is introduced. The condition is quite simple, but it generalizes not only the original Cook-Kuroda condition but also its generalization recently given by Schechter. Specialized to the onespace case, it is actually equivalent to Schechter's condition for an optimal choice of factorization. An application to potential scattering leads to a new result.

1. Introduction

Recently Schechter [1] and Simon [2] generalized the 20-year-old Cook-Kuroda criterion [3,4] for the existence of the wave operator in scattering theory. The purpose of the present paper is to contribute another generalization in the context of two-space scattering theory [5]. Our condition (Theorem I) has several advantages. First, it is formally simpler than others [1-4], involving only bounded operators. Second, it has a simple, purely time-dependent proof. Third, it is valid in the two-space setting without any extra assumptions on the identification operator J except that J is bounded. Fourth, Schechter's theorem can easily be reduced to ours, so that our results contain a simplified proof of a two-space version of his theorem. At the same time, this shows that our result is in general stronger than Schechter's.

On the other hand, Schechter's condition is extremely flexible, involving a (formal) factorization of the perturbation that can be chosen in many different ways. In fact we shall show that some favorable choices of the factorization lead to a result equivalent to ours (Theorem III).

Let us first state our theorems. In two-space scattering theory, one considers two selfadjoint operators $H_{j}, j=1,2$, each acting in its Hilbert space \mathfrak{H}_{j}, and a bounded linear operator J (the identification operator) on \mathfrak{H}_{1} to \mathfrak{H}_{2}. We denote by $U_{j}(t)=\exp \left(-i t H_{j}\right)$ the unitary group generated by $-i H_{j}$. The associated wave

[^0]
[^0]: * This work was partially supported by NSF Grant MCS 76-04655

