Commun. math. Phys. 65, 231-246 (1979)

Long Range Atomic Potentials in Thomas-Fermi Theory

Haim Brezis¹ and Elliott H. Lieb²*

¹ Département de Mathématiques, Université Paris VI, F-75230 Paris Cedex 05, France

² Departments of Mathematics and Physics, Princeton University, Princeton, New Jersey 08540, USA

Abstract. We prove that the interaction among neutral atoms in Thomas-Fermi theory behaves, for large separation l, like Γl^{-7} . The constant Γ is independent of the atomic nuclear charges, but does depend on the relative positions of the nuclei. We also show that Γ is not a simple sum of pair terms, i.e. in TF theory three and higher body terms persist into the asymptotic (in l) region.

I. Introduction

We investigate the interaction among neutral atoms in Thomas-Fermi (TF) theory and prove that the interaction is asymptotically (const.) l^{-7} for large separation, *l*. The non-neutral case will not be discussed because there the interaction is asymptotically (const.) l^{-1} for elementary electrostatic reasons.

The TF theory is defined as follows (see [1] for a complete discussion and the basic theorems): Define the functional

$$\mathscr{E}(\varrho) = \frac{3}{5} \int \varrho(x)^{5/3} dx - \int V(x) \varrho(x) dx + \frac{1}{2} \int \int \varrho(x) \varrho(y) |x - y|^{-1} dx dy + U$$

$$V(x) = \sum_{j=1}^{k} |z_j| |x - R_j|^{-1}$$

$$U = \sum_{1 \le i < j \le k} |z_i z_j| R_i - R_j|^{-1}$$
(1.1)

for positive functions $\varrho(x)$ on \mathbb{R}^3 in $L^{5/3} \cap L^1$. $\mathscr{E}(\varrho)$ is the functional appropriate to a system consisting of k nuclei of charges $z_i > 0$ and located at $R_i \in \mathbb{R}^3$. The TF energy is defined to be

$$e(z_1, \dots, z_k; R_1, \dots, R_k) = \min_{\varrho} \mathscr{E}(\varrho)$$
(1.2)

^{*} Work partially supported by U.S. National Science Foundation grant MCS 75 21684 A02