Commun. math. Phys. 61, 267-273 (1978)

Remarks on the Modular Operator and Local Observables

Carlo Rigotti*

Istituto Matematico "G. Castelnuovo", Università di Roma, I-00100 Roma, Italy

Abstract. In this paper we give a characterization of the modular group of a von Neumann algebra \mathscr{R} , with a cyclic and separating vector, which provides at the same time a necessary and sufficient condition so that two von Neumann algebras \mathscr{R}_1 and \mathscr{R}_2 , such that $\mathscr{R}_1 \subseteq \mathscr{R}_2'$, are the mutual commutants, i.e. $\mathscr{R}_1 = \mathscr{R}_2'$.

An application is made to the duality property in Quantum Field Theory, and we give a sufficient condition for PCT invariance in a theory of local observables.

1. Introduction

It is known that if \mathscr{R} is a von Neumann algebra with a cyclic and separating vector Ω , then the associated modular operator is characterized by the following conditions:

i) $\Delta = \Delta^*, \Delta > 0;$

ii) for each $t \in \mathbb{R} \Delta^{it} \Omega = \Omega$;

iii) for each $t \in \mathbb{R} \Delta^{it} \mathscr{R} \Delta^{-it} = \mathscr{R}$;

iv) the automorphism group $\sigma_t = \Delta^{it} \cdot \Delta^{-it}$, satisfies the KMS condition for the state $\omega_0 = (\Omega, \cdot \Omega)$.

Recall that $\Delta^{1/2}$ is the modulus in the polar decomposition of the *-operator $A\Omega \rightarrow A*\Omega$, $A \in \mathcal{R}$; the phase J is an antiunitary involution such that $J\Delta^{1/2}A\Omega = A*\Omega$, and $J\mathcal{R}J = \mathcal{R}'$. By these relations $\Delta^{1/2}\mathcal{R}^{sa}\Omega = \mathcal{R}'^{sa}\Omega$, where we denote with \mathcal{R}^{sa} the selfadjoint operators of \mathcal{R} [8].

Conversely the KMS condition is easily implied by the condition

iv') $\Delta^{1/2} \mathscr{R}^{\mathrm{sa}} \Omega \subset \mathscr{R}'^{\mathrm{sa}} \Omega$.

In this note we show that condition iv') independently from Tomita-Takesaki theory, implies a commutation theorem, and at the same time characterizes the modular group, producing another proof of the uniqueness of the modular automorphisms.

^{*} Partially supported by C.N.R.