Commun. math. Phys. 58, 139-166 (1978)

Communications in Mathematical Physics © by Springer-Verlag 1978

On the Characterization of Relativistic Quantum Field Theories in Terms of Finitely Many Vacuum Expectation Values. I

Erwin Brüning

Fakultät für Physik der Universität, D-4800 Bielefeld, Federal Republic of Germany

Abstract. A characterization of monotone continuous linear functionals on tensoralgebras which arise in QFT is derived and some consequences are investigated. Then we look for necessary and sufficient conditions on a set

$$T_{(N)} = \{1, T_1, T_2, \dots, T_N\}$$
 $T_n \in E'_n$

of "n-point-functionals", which guarantee the existence of at least one monotone continuous linear functional

$$S = \{1, S_1, S_2, \dots\}$$
 on $\underline{E} = \bigoplus_{n=0}^{\infty} E_n$, $E_n = E_1 \tilde{\otimes}_{\pi} E_1 \tilde{\otimes}_{\pi} \dots \tilde{\otimes}_{\pi} E_1$,

 E_1 a special nuclear space, such that $S \upharpoonright \bigoplus_{n=0}^{N} E_n = T_{(N)}$, with special attention to QFT. A first application is a characterization of all monotone continuous linear extensions in the case N=2. The notion of minimal extensions is introduced. Its relevance is discussed. Necessary and sufficient conditions on $T_{(2N)}$ for the existence of minimal extensions are presented. Some properties of minimal extensions are derived. In the simplest case $E \cong \mathbb{C}$ the concept of minimal extensions allows to answer the extension problem completely for arbitrary $N \in \mathbb{N}$. For the case of general $E = E_1$ and N = 2 it is shown that the known examples of monotone continuous linear extensions are minimal extensions of it.

0. Introduction, Notation

Up to now the main concern in axiomatic QFT has been that of the linear program [1,4,8]. The nonlinear constraints of QFT (positivity condition and uniqueness of the vacuum) have been treated much less [15, 17, 19]. But nevertheless these nonlinear constraints are as important as the linear constraints are. One step of incorporating the positivity condition into QFT is the program of Bros and Lasalle [20]. It relies on additional technical assumptions.