On the Pairing of Polarizations

J. H. Rawnsley
Dublin Institute for Advanced Studies, School of Theoretical Physics, Drblinis 4 , Ireland

Abstract

If F is a positive Lagrangian sub-bundle of a symplectic vecter (E, ω) we show by elementary means that the Chern classes of F are determined. by ω. The notions of metaplectic structure for (E, ω), metalinear structure for and square root of K^{F}, the canonical bundle of F are shown to be essentially the same. If F and G are two positive Lagrangian sub-bundles with $F \cap \bar{G}=D^{\mathbb{C}}$, we define a pairing of K^{F} and K^{G} into the bundle $\mathscr{D}^{-2}(D)$ of densities of order -2 on D. This is the square of Blattner's half-form pairing and so characterizes the latter up to a sign.

Introduction

In order to construct a Hilbert space in the theory of geometric quantization [4, 6, 7], Kostant [3] introduced the notion of half-form normal to a positive polarization. If two positive polarizations F and G are such that $F \cap \bar{G}=D^{\mathbb{C}}$ is smooth, Blattner [1] showed the existence of a pairing of the half forms normal to F and G into the densities of order -1 on D.

If $F \cap \bar{G}=0, \beta \in \Gamma K^{F}, \gamma \in \Gamma K^{G}, K^{F}, K^{G}$ the canonical bundles of F and G, then $\beta \wedge \bar{\gamma}$ is a non-singular pairing of K^{F} and K^{G} into the volumes on X. Dividing by the Liouville volume gives a function $\langle\beta, \gamma\rangle_{0}$. In the general case where $F \cap \bar{G}=D^{\mathbb{C}}$, we observe that F and G project into D^{\perp} / D to give Lagrangian sub-bundles $F / D, G / D$ satisfying $F / D \cap \overline{G / D}=0$. Thus by dividing out the intersection we can reduce to the case where $F \cap \bar{G}=0$ and use the exterior product to define a pairing. This pairing is shown to be the square of Blattner's half-form pairing. It is often easier to compute this pairing of the canonical bundles and use continuity arguments to deduce properties of the half-form pairing.

Notation. Let V be a vector space over a field $\mathfrak{f}, b=\left(v_{1}, \ldots, v_{r}\right)$ an r-tuple of elements of V and $A=\left(A_{i j}\right)$ an $r \times s$ matrix over \mathfrak{f} then $b \cdot A$ will denote the s-tuple with j-th entry $\sum_{i=1}^{r} A_{i j} v_{i}$. If b_{1}, b_{2} are r - and s-tuples, $\left(b_{1}, b_{2}\right)$ will denote the $r+s$-tuple obtained in the obvious way. If T is an endomorphism of V and b an r-tuple, $T b$ will denote the r-tuple obtained by letting T act componentwise.

