© by Springer-Verlag 1977

Connection between the Spectrum Condition and the Lorentz Invariance of the Yukawa, Quantum Field Theory

Edward P. Osipov

Department of Theoretical Physics, Institute for Mathematics, 630090, Novosibirsk, 90, USSR

Abstract. We prove, under assumptions, the Lorentz invariance of some quantum field theories. In the separate paper we show that our assumptions are fulfilled in the (renormalized) Yukawa₂ quantum field theory with the periodic boundary conditions.

In the present paper we prove, under several assumptions, the Lorentz invariance of some quantum field theories. In a separate paper we show that our assumptions are fulfilled for the CPT invariant states in the (renormalized) Yukawa₂ quantum field theory with the periodic boundary conditions (see also [1]). Keeping this application in mind, we bound ourselves to the case of the Yukawa₂ quantum field theory.

For the sake of convenience, we introduce a space of four-component complexvalued test functions and we set for each four-component function

$$\Psi_0(h) := \sum_{\alpha=1}^{2} \int dx \psi_0^{\alpha}(x) h_{\alpha}(x) + \sum_{\alpha=3}^{4} \int dx \bar{\psi}_0^{\alpha-2}(x) h_{\alpha}(x)$$

where $\psi_0^{\alpha}(x)$ is the free fermion field in the one-dimensional space and $\overline{\psi_0}(x) = \psi_0(x)^* \gamma_0$. If h(x) is a four-component function, we set

$$\operatorname{supp} h := \bigcup_{\alpha} \operatorname{supp} h_{\alpha}(x).$$

Let \mathfrak{A}_f be the field algebra for the Y_2 , as it is defined in [2], i.e., \mathfrak{A}_f is the C^* algebra defined as the norm closure of $\bigcup_B \mathfrak{A}_f(B)$, where $\mathfrak{A}_f(B)$ is the von Neumann algebra generated by bounded functions of the time zero free scalar field $\varphi_0(f)$ and its time derivative $\pi_0(f)$, $f \in C_0^\infty(\mathbb{R})$, supp $f \in B$, and by the operators of the free fermion field $\Psi_0(h)$, $h \in C_0^\infty(\mathbb{R}) \otimes \mathbb{C}^4$, supp $h \in B$.

Let \mathscr{P}_2 be the Poincare group (= the inhomogeneous Lorentz group) in two space-time dimensions, i.e. the three-parameter group of transformations

$$\begin{aligned} \{a_0, a_1, \lambda\} (t, x) &= (a_0 + \frac{1}{2}(\lambda^2 + \lambda^{-2})t + \frac{1}{2}(\lambda^2 - \lambda^{-2})x, \\ a_1 &+ \frac{1}{2}(\lambda^2 - \lambda^{-2})t + \frac{1}{2}(\lambda^2 + \lambda^{-2})x). \end{aligned}$$