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Abstract. The infinite system of Newton's equations of motion is considered for
two-dimensional classical particles interacting by conservative two-body forces
of finite range. Existence and uniqueness of solutions is proved for initial
configurations with a logarithmic order of energy fluctuation at infinity. The
semigroup of motion is also constructed and its continuity properties are
discussed. The repulsive nature of interparticle forces is essentially exploited;
the main condition on the interaction potential is that it is either positive or has a
singularity at zero interparticle distance, which is as strong as that of an
inverse fourth power.

1. Introduction

In this paper we extend some of our earlier results [3] on the existence of non-
equilibrium dynamics of one-dimensional infinite particle systems to infinite
systems of two-dimensional particles interacting by conservative repulsive forces of
finite range. For a detailed motivation of this problem see [1-3], where further
references are given on equilibrium dynamics as well.

Consider a finite or infinite system co of two-dimensional particles. We assume
that particles are numbered by a nonempty subset J of the set / of integers, the
position and the velocity of the z-th particle, ieJ, will be denoted by xt and vi9

respectively. Conservative two-body forces are given by the negative gradient
F= —grad(7 of a symmetric real function U= U(x) of two variables (x(1),x(2)) = x,
U is the interaction potential. For equal particles of unit mass indexed by
Newton's equations of motion read formally as

^ -xJ.), %=vt; ieJ (NJ)
at jeJi at

with initial conditions specifying the position and the velocity of each particle at
time zero. The full system, when J = J, will be denoted as (NI),
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