Non-Equilibrium Dynamics of Two-dimensional Infinite Particle Systems with a Singular Interaction

J. Fritz
Mathematical Institute, Budapest, Hungary
R. L. Dobrushin
Institute for Problems of Information Transmission, Moscow, USSR

Abstract

The infinite system of Newton's equations of motion is considered for two-dimensional classical particles interacting by conservative two-body forces of finite range. Existence and uniqueness of solutions is proved for initial configurations with a logarithmic order of energy fluctuation at infinity. The semigroup of motion is also constructed and its continuity properties are discussed. The repulsive nature of interparticle forces is essentially exploited; the main condition on the interaction potential is that it is either positive or has a singularity at zero interparticle distance, which is as strong as that of an inverse fourth power.

1. Introduction

In this paper we extend some of our earlier results [3] on the existence of nonequilibrium dynamics of one-dimensional infinite particle systems to infinite systems of two-dimensional particles interacting by conservative repulsive forces of finite range. For a detailed motivation of this problem see [1-3], where further references are given on equilibrium dynamics as well.

Consider a finite or infinite system ω of two-dimensional particles. We assume that particles are numbered by a nonempty subset J of the set I of integers, the position and the velocity of the i-th particle, $i \in J$, will be denoted by x_{i} and v_{i}, respectively. Conservative two-body forces are given by the negative gradient $F=-\operatorname{grad} U$ of a symmetric real function $U=U(x)$ of two variables $\left(x^{(1)}, x^{(2)}\right)=x$, U is the interaction potential. For equal particles of unit mass indexed by $J \subset I$, Newton's equations of motion read formally as

$$
\begin{equation*}
\frac{d v_{i}}{d t}=-\sum_{j \in J_{i}} \operatorname{grad} U\left(x_{i}-x_{j}\right), \quad \frac{d x_{i}}{d t}=v_{i} ; \quad i \in J \tag{NJ}
\end{equation*}
$$

with initial conditions specifying the position and the velocity of each particle at time zero. The full system, when $J=I$, will be denoted as (NI), $J_{i}=\{j, j \in J, j \neq i\} \quad$ if $\quad i \in J$.

