page

The Pole-Factorization Theorem in S-Matrix Theory*

Daniel Iagolnitzer

Service de Physique Théorique, Centre d'Études Nucléaires de Saclay, F-Gif-sur-Yvette, France

Henry P. Stapp

Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720, USA

Abstract. Previous derivations of physical-region discontinuity formulas in S-matrix theory make use of an ad hoc assumption according to which certain sets of singularities associated with mixed- α Landau diagrams cancel among themselves. The aim of the present work is to prove the simplest of these discontinuity formulas, namely, the pole-factorization theorem for a $3\rightarrow 3$ equal-mass process below the 4-particle threshold, without using this mixed- α cancellation assumption. The result is derived from macro-causality, unitarity and two weak regularity assumptions on scattering functions and bubble diagram functions.

Contents

Abstract	1
1. Introduction	1
2. Two Assumptions on scattering and bubble diagram functions	5
(a) Assumption on $u=0$ points	5
(b) Analyticity assumption (no sprout assumption)	6
3. Pole-factorization theorem (proof using the mixed-α concellation assumption)	8
4. Analysis of mixed-α Landau diagrams	10
5. New proof of the pole-factorization theorem	17
(a) Main steps of the proof	17
(b) Preliminary mathematical results 1	
(c) Details on the proof	19
Appendix I: Treatment of mixed-α diagrams	23
Appendix II: Comparison to treatment of [12]	
Appendix III: Three equal-mass particles can collide only thrice	29
References	30

1. Introduction

The basic quantities of interest in the study of systems of massive particles with short-range interactions are the scattering functionals S_{IJ} between sets I and J of

^{*} This work was supported by the United States Energy Research and Development Administration, and by Centre d'Études Nucleaires de Saclay