Commun. math. Phys. 56, 115-123 (1977)

A Classification of SU₃ Magnetic Monopoles

J. Madore*

Centre de Physique Théorique, CNRS, F-13274 Marseille Cedex 2, France

Abstract. A classification scheme is proposed for SU_3 magnetic monopoles when the Higgs fields lie in the adjoint representation. The scheme is based on a study of the second homotopy groups of the orbit spaces.

I. Introduction

Consider an octet of self-interacting scalar fields transforming according to the adjoint representation of SU_3 , minimally coupled to a set of Yang-Mills fields. Suppose that the scalar self-interaction potential is generic—that it depends explicitly on both invariants of the adjoint representation. Then at infinity the little group is U_2 . See, for example [1, 2]. Spontaneous symmetry breaking leaves massless the Yang-Mills fields. If we wish to discuss the electromagnetic properties of a solution to the field equations, one of these must be chosen as the electromagnetic field. That is, we must choose a U_1 subgroup of U_2 . U_2 contains also SU_2 as a subgroup. There are three ways to choose U_1 according to how it intersects SU_2 :

- (i) $U_1 \cap SU_2 = \{1\},\$
- (ii) $U_1 \cap SU_2 = \mathbb{Z}_2$,
- (iii) $U_1 \in SU_2$.

We are interested in everywhere regular, finite energy, static solutions to the field equations and we wish to show that they may be classified by two integers s and t which satisfy the following conditions, according to the three possible choices of U_1 :

- (i) s is even or odd, t=0,
- (ii) s is even, t=0,
- (iii) s=0, t is even or odd.

^{*} Permanent address : Laboratoire de Physique Théorique, Institut Henri Poincaré, 11, rue Pierre et Marie Curie, F-75231 Paris Cedex 5, France