

© by Springer-Verlag 1977

Hausdorff Measure and the Navier-Stokes Equations

Vladimir Scheffer

Department of Mathematics, Stanford University, Stanford, California 94305, USA

Abstract. Solutions to the Navier-Stokes equations are continuous except for a closed set whose Hausdorff dimension does not exceed two.

1. Informal Statement of Results

Let $v: R^3 \to R^3$ be a divergence free, square integrable vector field on 3-space. We will show that there exists a function $u: R^3 \times R^+ \to R^3$ ($R^+ = \{t: t > 0\}$) is time) which is a weak solution to the Navier-Stokes equations of incompressible fluid flow with viscosity = 1 and initial conditions v, and which satisfies the following: There exists a set $S \subset R^3 \times R^+$ such that the two dimensional Hausdorff measure of S is finite, $(R^3 \times R^+) - S$ is an open set, and the restriction of u to $(R^3 \times R^+) - S$ is a continuous function.

The above will be derived as a consequence of a more general theorem in which u satisfies a weak form of the Navier-Stokes equations with an external force $f: R^3 \times R^+ \to R^3$ which is divergence free with the property $f(x, t) \cdot u(x, t) \leq 0$.

2. Notation and Complete Statement of Results

Hausdorff measure is defined in [2, p. 171]. We set $R^+ = \{t \in R : t > 0\}$ and $B(a, r) = \{x \in R^3 : |x - a| \le r\}$ for all $a \in R^3$ and r > 0. The norm $|\cdot|$ is always euclidean norm and $\|\cdot\|_p$ is the L^p norm. Open and closed intervals are denoted (a, b) and [a, b], respectively. If $f: X \to R$ and $A \subset X$ then $\sup(f, A)$ is the supremum of f over A and $\sup(f)$ is the closure of $\{x: f(x) \ne 0\}$. If f and g are functions defined on a subset of $R^3 \times R$, h is a function on R^3 , and k is a function on R, then we set

$$(f*g)(x,t) = \iint f(y,s)g(x-y,t-s)dyds,$$

$$(f*h)(x,t) = \iint f(y,t)h(x-y)dy,$$

$$(f*k)(x,t) = \iint f(x,s)k(t-s)ds$$

whenever the integrals make sense. If $X=R^3$, X=R, or $X=R^3 \times R^+$, we let $C^{\infty}(X,R)$ be the set of infinitely differentiable functions $f:X\to R$. In addition, $C_0^{\infty}(X,R)$ is the