Ground State Representation of the Infinite One-dimensional Heisenberg Ferromagnet

II. An Explicit Plancherel Formula

Donald Babbitt*
Department of Mathematics, University of California, Los Angeles, CA 90024, USA

Lawrence Thomas*ぇ
Department of Mathematics, University of Virginia, Charlottesville, VA 22903, USA

Abstract

In its ground state representation, the infinite, spin 1/2 Heisenberg chain provides a model for spin wave scattering, which entails many features of the quantum mechanical N-body problem. Here, we give a complete eigenfunction expansion for the Hamiltonian of the chain in this representation, for all numbers of spin waves. Our results resolve the questions of completeness and orthogonality of the eigenfunctions given by Bethe for finite chains, in the infinite volume limit.

1. Introduction

Let H be the self adjoint Hamiltonian corresponding to the ground state representation of the spin $1 / 2$, infinite one-dimensional Heisenberg ferromagnet with nearest neighbor interactions. The operator H is reduced by a spin-wave number operator, and H restricted to the N spin-wave sector is unitarily equivalent in a natural way to a second difference operator $-\Delta_{N}$ with "sticky" boundary conditions acting in an l^{2}-space.

The purpose of this article is to prove the completeness of an explicit eigenfunction expansion of $-\Delta_{N}$, for all N i.e. all numbers of spin-waves. This result was announced in [1]. In addition, using the generalized eigenfunctions for $-\Delta_{N}$, we construct a complete set of commuting self adjoint projections $\left\{E_{\beta}(\Delta)\right\}$ which reduce $-\Delta_{N}$. Here the subscript β called the binding, describes the manner in which the N-spin waves are bound together into "complexes" (in Bethe's terminology [2]), and Δ is a Borel subset of a torus whose dimension depends on the number of complexes comprising β. Any two projective $E_{\beta}(\Delta), E_{\beta^{\prime}}\left(\Delta^{\prime}\right)$ are orthogonal for β and β^{\prime} distinct or if $\beta=\beta^{\prime}$, for Δ and Δ^{\prime} disjoint.

In fact, the projections $\left\{E_{\beta}(\Delta)\right\}$ were already obtained in [4] in a slightly different representation by considering the thermodynamic limit and utilizing the Bethe solution in [2] for the finite volume eigenfunctions. But the questions of

[^0]
[^0]: \star Research supported in part by NSF Grant No. MCS-76-05857
 ** Research supported in part by NSF Grant No. MCS-74-07313-A02

