Commun. math. Phys. 53, 299-302 (1977)

On the Decay of Correlations in SO(n)-symmetric Ferromagnets*

Oliver A. McBryan

Department of Mathematics, Cornell University, Ithaca, NY 14853, USA

Thomas Spencer**

Department of Mathematics, The Rockefeller University, New York, NY 10021, USA

Abstract. We prove that for low temperatures *T* the spin-spin correlation function of the two-dimensional classical SO(n)-symmetric Ising ferromagnet decays faster than $|x|^{-\operatorname{const} T}$ provided $n \ge 2$. We also discuss a nearest neighbor continuous spin model, with spins restricted to a finite interval, where we show that the spin-spin correlation function decays exponentially in any number of dimensions.

I. Introduction and Results

The Mermin-Wagner theorem [1] states that at non-zero temperatures the two dimensional Heisenberg model has no spontaneous magnetization. Consequently the spin-spin correlation function decays to zero at large distances, although the Mermin-Wagner theorem gives no indication of the rate of decay. Similar results apply for the classical SO(n)-symmetric $(n \ge 2)$ nearest neighbor Ising ferromagnets which we study here, see for example the paper of Mermin [2]. We establish a polynomial upper bound for the decay rate of the spin-spin correlation function for these models at very low temperatures. Fisher and Jasnow [3] have previously obtained a $\log^{-1}|x|$ decay.

To describe the SO(n)-symmetric ferromagnet, we consider the infinite lattice of unit spacing with sites labelled by indices $i \in \mathbb{Z}^2$. To each site *i* we associate an *n*-component classical spin s_i of unit length, $||s_i|| = 1$. The spin-spin correlation function at inverse temperature $\beta = T^{-1}$ is

$$\langle \mathbf{s}_{0} \cdot \mathbf{s}_{x} \rangle (\beta) = Z^{-1} \prod_{i} \int d\Omega_{i}^{(n)} e^{\beta \sum_{\langle i,j \rangle} \mathbf{s}_{i} \cdot \mathbf{s}_{j}} \mathbf{s}_{0} \cdot \mathbf{s}_{x} ,$$

$$Z = \prod_{i} \int d\Omega_{i}^{(n)} e^{\beta \sum_{\langle i,j \rangle} \mathbf{s}_{i} \cdot \mathbf{s}_{j}} ,$$
(1)

where $\sum_{\langle i,j \rangle}$ denotes a sum over nearest neighbor pairs, $\Omega_i^{(n)}$ is the invariant measure

* Work supported in part by NSF, Grant PHY76-17191

** A Sloan Fellow