Commun. math. Phys. 53, 257-275 (1977)

The Critical Behavior of ϕ_1^4

David Isaacson

Department of Mathematics, Rutgers University, Hill Mathematical Center, New Brunswick, New Jersey 08903, USA

Abstract. The eigenvalues, eigenfunctions, and Schwinger functions of the ordinary differential operator

 $H(\lambda, m) = \frac{1}{2} \{ p^2 + \lambda q^4 + (m^2 - \lambda m^{-1})q^2 \}$

are studied as $\lambda \to \infty$. It is shown that the scaling limit of the Schwinger functions equals the scaling limit of a one dimensional Ising model. Critical exponents of $H(\lambda, m)$ are shown to equal critical exponents of the Ising model, while critical exponents of the renormalized theory are shown to agree with those of a harmonic oscillator.

Table of Contents

	Page
1. Introduction	0
2. Definitions	. 258
3. The Scaling Group	. 260
4. The Anharmonic Oscillator	. 261
5. The Scaling Limit	
6. The Proof of Lemma 5.1	. 266
7. Critical Behavior	
Appendix 1. The Spectral Properties of H_{ν}	
Appendix 2. The Scaling Limit of $I^{(n)}$. 274
References	. 275

1. Introduction

The purpose of this paper is to explain the behavior of the eigenvalues, eigenfunctions, and Schwinger (or correlation) functions of the ordinary differential operator

$$\frac{1}{2}\{p^2 + \lambda q^4 + (m^2 - \lambda m^{-1})q^2\}$$
(1.1)