Commun. math. Phys. 52, 111-126 (1977)

First and Second Quantised Neutron Diffusion Equations

E. B. Davies

St. John's College, Oxford OX1 3JP, England

Abstract. We show that a quantised linear Boltzmann equation can be obtained as an exact contracted form of a second quantised neutron diffusion equation in the weak coupling limit.

§1. Introduction

Let \mathscr{F} be the fermion Fock space built from a single particle space $\mathscr{H} = L^2(\mathbb{R}^3)$ and consider the evolution equation

$$\varrho'(t) = -i[H,\varrho] - \lambda(R\varrho + \varrho R)/2 + \lambda J(\varrho), \qquad (1.1)$$

where $\varrho(t)$ lies in the space $V = \mathcal{T}_s(\mathcal{F})$ of self-adjoint trace-class operators on \mathcal{F} . Here *H* is the free Hamiltonian on \mathcal{F} which equals $-\Delta$ on \mathcal{H} . The unbounded positive linear map $J: V \to V$ is defined by

$$J(\varrho) = \int_{\mathbb{R}^3} B_x \varrho B_x^* dx \tag{1.2}$$

where

$$B_x = a^* (f_x^3) a^* (f_x^2) a(f_x^1) .$$
(1.3)

In Equation (1.3), a and a^* are the fermion field operators smeared by the test functions f_x^i in Schwartz space \mathscr{S} . Moreover f_x^i is defined as the translate by a distance $x \in \mathbb{R}^3$ of f^i and it is supposed that f^2 and f^3 have disjoint supports in momentum space. Finally $\lambda > 0$ and

$$R = \int_{\mathbb{R}^3} B_x^* B_x dx \,. \tag{1.4}$$

Without further loss of generality we suppose that f^2 and f^3 have unit norm in \mathcal{H} .

The above phenomenological evolution equation describes a variable number of neutrons moving in a translation invariant external reservoir of unstable atoms, which they can induce to decay emitting further neutrons. It is shown in [2] that Equation (1.1) has the solution

$$\varrho(t) = T_t \{\varrho(0)\} \tag{1.5}$$