Dilations of Dynamical Semi-Groups

D. E. Evans and J. T. Lewis

School of Theoretical Physics, Dublin Institute for Advanced Studies, Dublin 4, Ireland

Abstract. We prove the existence of isometric and unitary dilations of a class of semi-groups of completely positive maps on an algebra of operators on a Hilbert space. The result has relevance to the problem of embedding an open quantum mechanical system in a closed one.

§ 1. Introduction

Empirical semi-group laws for the irreversible evolution of the state of a quantum mechanical system have been remarkably successful in a variety of applications [1, 2, 8, 14]. This has encouraged some workers to propose axioms for dynamical semi-groups [10, 12, 7]. From the point of view of fundamental theory such semi-groups are by themselves unsatisfactory: the conventional position is that the laws of quantum theory prescribe the time-reversible evolution of a closed system, and irreversible behaviour enters only when the evolution is restricted to an open sub-system. The time-reversible evolution of a closed system is described by a strongly-continuous one-parameter group of unitary operators on a Hilbert space. The question then arises: is a given irreversible evolution of a closed system? The purpose of this paper is to formulate this question mathematically and to answer it in the affirmative for a class of dynamical semi-groups which have interesting applications.

From the mathematical point of view we prove results for semi-groups of completely positive normal maps of W^* -algebras which are analogues of Szökefalvi-Nagy's dilation theorem [17] for semi-groups of contractions on Hilbert spaces and Stroescu's dilation theorem [16] for semi-groups of contractions on Banach spaces. Some results in this direction were obtained by Davies [5]; his proof was based on his theory [4] of quantum jump processes. We adopt his construction of a semi-group of isometries but our proof uses only the perturbation theory of semi-groups on a Banach space.