A New Method for Constructing Factorisable Representations for Current Groups and Current Algebras

K. R. Parthasarathy and K. Schmidt

Mathematics Institute, University of Warwick, Coventry, Warwickshire CV4 7AL, England

Abstract. Let $C_e^{\infty}(\mathbb{R}^n, G)$ denote the group of infinitely differentiable maps from *n*-dimensional Euclidean space into a simply connected and connected Lie group, which have compact support. This paper introduces a class of factorisable unitary representations of $C_e^{\infty}(\mathbb{R}^n, G)$ with the property that the unitary operator U_f corresponding to a function f in $C_e^{\infty}(\mathbb{R}^n, G)$ depends not only on f, but also on the derivatives of f up to a certain order. In particular these representations can not be extended to the group of all continuous functions from \mathbb{R}^n to G with compact support.

§ 1. Introduction

Let G be a simply connected and connected Lie group and let \mathscr{G} be its Lie algebra. Let $\exp:\mathscr{G} \to G$ denote the exponential map. We denote by $C_e^{\infty}(R, G)$ the class of all C^{∞} maps from R into G with compact support. A map $\varphi: R \to G$ is said to have compact support if takes the value e, i.e., the identity element of G outside a compact set. Let $C_0^{\infty}(R, \mathscr{G})$ denote the class of all infinitely differentiable maps from R into the vector space \mathscr{G} with compact support. For any $f \in C_0^{\infty}(R, \mathscr{G})$, we define $\operatorname{Exp} f \in C_e^{\infty}(R, G)$ by writing $(\operatorname{Exp} f)(x) = \exp f(x)$, for all $x \in R$. $C_e^{\infty}(R, G)$ is a group (under pointwise multiplication) and $C_0^{\infty}(R, \mathscr{G})$ is a Lie algebra (under pointwise addition, scalar multiplication and Lie brackets). These may respectively be called as current group and current algebra over R. We give $C_0^{\infty}(R, \mathscr{G})$ the usual Schwarz topology. A homomorphism $\varphi \to U_{\varphi}$ of the group $C_e^{\infty}(R, G)$ into the group of unitary operators on a Hilbert space H is said to be a unitary representation or simply a representation if $U_{\operatorname{Exp} f_n}$ converges weakly to $U_{\operatorname{Exp} f}$ whenever $f_n \to f$ as $n \to \infty$ in the topology of $C_0^{\infty}(R, \mathscr{G})$.

For any compact set $K \subset R$, let $C(K, G) \subset C_0^{\infty}(R, G)$ be the subgroup of all those maps with support contained in K. If K_1 , K_2 are two disjoint compact subsets of R, $C(K_1 \cup K_2, G)$ can be identified in a natural manner with the cartesian product $C(K_1, G) \times C(K_2, G)$. Indeed, for any $\varphi \in C(K_1 \cup K_2, G)$, define

 $\varphi_i(x) = \varphi(x)$ if $x \in K_i$

$$=e$$
 if $x \notin K_i$, $i=1,2$.