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Abstract. Relativistic canonical systems and their symmetries are defined and
classified within the class of canonical systems treated in a previous paper.
Their algebra of variables contains a subset of "monotone" variables which
satisfy a certain uniqueness condition and are later shown to increase strictly
in the course of the dynamical evolution of the system on all physically ac-
ceptable states. This leads to a unique space-time interpretation of relativistic
canonical systems. Finally we study space-time factorizations of such systems
and introduce the appropriate notion of states. For a certain simple class of
states the theory is shown to describe the motion of relativistic matter in
some external gravitational and electromagnetic field.

1. Introduction

In this paper we shall study a certain class of canonical systems, the general
theory of which we have developed in [1]. Let us briefly state the basic notions
and results obtained there.

A canonical system is an ordered set containing a canonical manifold M
(with canonical form Ω, see [2]) and a canonical vectorfield Y on M (the
kinematical vectorfield). The algebra 9I(M) of differentiable functions on M
(these are called variables) contains a subalgebra 2I0 which is required to satisfy
a set of Kinematical Axioms: Under the Poisson bracket operation 2I0 is maximal
commutative and is mapped to itself by variables from the subset F(2I0). Both
9I0

 and y(2lo) have only the zero variable in common and determine the dif-
ferentiable structure on M (such sets of functions which define a differentiable
structure on M are called sufficient sets).

The Hamiltonian vectorfields generated by variables in 2ί0 define a quotient
manifold N of integral submanifolds in M. To any variable A in 2ί0 there cor-
responds a unique differentiable function A* on N, and vice versa. The vector-
fields X on N are in bijective correspondence with variables Px in some submodule
of functions 911:

{Px, A}* = X(A*); A in 210, Px in ̂  . (1.1)


