On the Space-Time Interpretation of Classical Canonical Systems II: Relativistic Canonical Systems

K. Drühl

Max-Planck-Institut zur Erforschung der Lebensbedingungen der wissenschaftlich-technischen Welt, D-8130 Starnberg, Federal Republic of Germany

Abstract. Relativistic canonical systems and their symmetries are defined and classified within the class of canonical systems treated in a previous paper. Their algebra of variables contains a subset of "monotone" variables which satisfy a certain uniqueness condition and are later shown to increase strictly in the course of the dynamical evolution of the system on all physically acceptable states. This leads to a unique space-time interpretation of relativistic canonical systems. Finally we study space-time factorizations of such systems and introduce the appropriate notion of states. For a certain simple class of states the theory is shown to describe the motion of relativistic matter in some external gravitational and electromagnetic field.

1. Introduction

In this paper we shall study a certain class of canonical systems, the general theory of which we have developed in [1]. Let us briefly state the basic notions and results obtained there.

A canonical system is an ordered set containing a canonical manifold M (with canonical form Ω , see [2]) and a canonical vectorfield Y on M (the kinematical vectorfield). The algebra $\mathfrak{A}(M)$ of differentiable functions on M (these are called variables) contains a subalgebra \mathfrak{A}_0 which is required to satisfy a set of Kinematical Axioms: Under the Poisson bracket operation \mathfrak{A}_0 is maximal commutative and is mapped to itself by variables from the subset $Y(\mathfrak{A}_0)$. Both \mathfrak{A}_0 and $Y(\mathfrak{A}_0)$ have only the zero variable in common and determine the differentiable structure on M (such sets of functions which define a differentiable structure on M are called sufficient sets).

The Hamiltonian vectorfields generated by variables in \mathfrak{A}_0 define a quotient manifold N of integral submanifolds in M. To any variable A in \mathfrak{A}_0 there corresponds a unique differentiable function A^* on N, and vice versa. The vector-fields X on N are in bijective correspondence with variables P_X in some submodule of functions \mathfrak{A}_1 :

$$\{P_X, A\}^* = X(A^*); A \text{ in } \mathfrak{A}_0, P_X \text{ in } \mathfrak{A}_1.$$

$$(1.1)$$