Commun. math. Phys. 49, 191-215 (1976)

Generalized K-Flows

Gérard G. Emch*

ZiF der Universität Bielefeld, D-4800 Bielefeld, Federal Republic of Germany

Abstract. The classical concept of K-flow is generalized to cover situations encountered in non-equilibrium quantum statistical mechanics. The ergodic properties of generalized K-flows are discussed. Several non-isomorphic examples are constructed, which differ already in the type (II₁, III₂, and III₁) of the factor on which they are defined. In particular, generalized factor K-flows with dynamical entropy either zero (singular K-flows) or infinite (special non-abelian K-flows) are constructed.

Introduction

The *motivation* for this paper stems from the following schematic description of the *purpose* of non-equilibrium statistical mechanics.

Given a dissipative, thermodynamical system $\{\mathfrak{N}_S, \phi_S, \gamma(\mathbb{R}^+)\}$, devise: (i) a thermal bath $\{\mathfrak{N}_R, \phi_R\}$, and (ii) an interaction between \mathfrak{N}_S and \mathfrak{N}_R , in such a manner that the following conditions be satisfied. Firstly, the composite dynamical system $\{\overline{\mathfrak{N}} = \mathfrak{N}_S \otimes \mathfrak{N}_R, \overline{\phi} = \phi_S \otimes \phi_R, \overline{\alpha}(\mathbb{R})\}$ should be *conservative*, and understandable from the laws of hamiltonian mechanics. Secondly, $\gamma(\mathbb{R}^+)$ should appear as the *restriction*, to the system \mathfrak{N}_S of interest, of the total evolution $\overline{\alpha}(\mathbb{R})$; namely, for every (normal) state ψ on \mathfrak{N}_S , every observable N in \mathfrak{N}_S , and all positive times t, one should have:

$$\langle \psi \otimes \phi_R; \bar{\alpha}(t)[N \otimes I] \rangle = \langle \psi; \gamma(t)[N] \rangle.$$
⁽¹⁾

To be specific, we shall assume that ϕ_s and ϕ_R are thermal equilibrium states, respectively for the von Neumann algebras \mathfrak{N}_s and \mathfrak{N}_R . In line with the ideas of non-equilibrium thermodynamics, we shall further assume that $\gamma(\mathbb{R}^+)$ is a semigroup of positive, linear maps of \mathfrak{N}_s into itself such that $\phi_s \circ \gamma(t) = \phi_s$ for every $t \in \mathbb{R}^+$, and that $\langle \psi; \gamma(t)[N] \rangle$ approaches $\langle \phi_s; N \rangle$ when t tends to $+\infty$, for every

^{*} On leave of absence from the Depts. of Mathematics and Physics, The University of Rochester, Rochester, N. Y. 14627, USA