Commun. math. Phys. 49, 107-112 (1976)

Taylor's Theorem for Analytic Functions of Operators

Wesley E. Brittin and Walter Wyss

Department of Physics and Astrophysics, University of Colorado, Boulder, Colorado 80309, USA

Abstract. We discuss analytic functions on a Banach algebra into itself. In particular expressions for derivatives are given as well as convergent Taylor expansions.

Introduction

The problem of expansion of functions of non-commuting operators occurs in many branches of theoretical physics. Many formal schemes [1-5] have been used, but in very few cases [5] has convergence been established. We discuss a case for which convergence is established. Our approach follows in spirit the work [5] of Araki.

I. Analytic Functions of Operators and Derivatives

Let $F: \mathbb{C} \to \mathbb{C}$ be an analytic function in $G = \{z \mid |z| < \varrho\}$. In the domain G, F has a convergent power series expansion

$$F(z) = \sum_{n=0}^{\infty} c_n z^n \,. \tag{1}$$

The n^{th} derivative $D^n F$ of F also has a convergent power series having the same domain of convergence as F.

Let \mathscr{B} be a Banach algebra and denote by $\mathscr{L} = \mathscr{L}^{1}(\mathscr{B})$ the Banach algebra of bounded linear maps L of \mathscr{B} into itself. The norm of $\mathscr{L}^{1}(\mathscr{B})$ is defined by $\|L\| = \sup_{A \in \mathscr{B}} \frac{\|LA\|}{\|A\|}$. We then define the Banach algebras $\mathscr{L}^{n}(\mathscr{B})$ iteratively by $\mathscr{L}^{1}(\mathscr{L}^{n-1}(\mathscr{B}))$.

Definition 1. Let \mathscr{B} be a Banach algebra and $A, B \in \mathscr{B}$. For $0 \leq \lambda \leq 1$ let A_{λ} be the linear map from \mathscr{B} into \mathscr{B} defined by

$$A_{\lambda}B = AB - \lambda d_{A}B, \qquad (2)$$