Commun. math. Phys. 49, 1-16 (1976)

Scattering States and Bound States in $\lambda \mathscr{P}(\phi)_2^{\star}$

Thomas Spencer and Francesco Zirilli** Rockefeller University, New York, N.Y. 10021, USA

Abstract. By analyzing the Bethe-Salpeter equation for even $\lambda \mathscr{P}(\phi)_2$ models we show that for weak coupling the mass spectrum is discrete and of finite multiplicity below 2m. Moreover on even states of energy less than $4(m-\varepsilon)$ we show that the S matrix is unitary. Here *m* is the physical mass and $\varepsilon = \varepsilon(\lambda) \rightarrow 0$ as $\lambda \rightarrow 0$. Our results rely essentially only on a simple assumption about the analyticity of the Bethe-Salpeter kernel which has been verified for weak coupling. For the interaction $\lambda \phi^4$, $(\lambda/m_0^2 \leq 1)$ we show that there are no even bound states of energy less than $4(m-\varepsilon)$.

Introduction

We investigate the energy-momentum spectrum for even $\lambda \mathscr{P}(\phi)_2$ models via the Euclidean Bethe-Salpeter equation. Let $P = (P^0, P^1)$ be the energy-momentum operator acting on the Hilbert space of states \mathscr{H} and define $\Omega \in \mathscr{H}$ to be the vacuum. The first results concerning the spectrum of P were established by Glimm et al. [1, 2]. By using a weak coupling cluster expansion, they showed that the closure of the span of

$$\Omega, e^{ix^{0}P^{0}}\phi_{0}(f_{1})\Omega, \dots, e^{ix^{0}P^{0}}\prod_{i}^{N}\phi_{0}(f_{i})\Omega, f_{i} \in C_{0}^{\infty}(\mathbb{R})$$

contains all states of energy less than $(N+1)(m-\varepsilon)$ for λ (depending on N) sufficiently small. Here $\varepsilon(\lambda) \rightarrow 0$ as $\lambda \rightarrow 0$ and $\phi_0(f_i)$ denotes the time zero field smeared with f_i . It was also shown that for even \mathscr{P} the mass operator restricted to the odd subspace of \mathscr{H} has exactly one eigenvalue m on the interval $[0, 3(m-\varepsilon)]$. As a result the Haag-Ruelle theory [3] yields the existence of an isometric S matrix. It has recently been shown that $S \neq 1$ and is asymptotic in λ [4, 5, 13]. For the special case of $\lambda \phi^4$, bound states of energy less than 2m were excluded by using correlation inequalities [2].

^{*} Work supported in part by NSF, Grant MPS 74-13252

^{**} Present address: Istituto matematico G. Castelnuovo, Università di Roma, I-00185 Roma, Italy