Scattering States and Bound States in $\lambda \mathscr{P}(\phi)_{2}{ }^{\star}$

Thomas Spencer and Francesco Zirilli**
Rockefeller University, New York, N. Y. 10021, USA

Abstract

By analyzing the Bethe-Salpeter equation for even $\lambda \mathscr{P}(\phi)_{2}$ models we show that for weak coupling the mass spectrum is discrete and of finite multiplicity below $2 m$. Moreover on even states of energy less than $4(m-\varepsilon)$ we show that the S matrix is unitary. Here m is the physical mass and $\varepsilon=\varepsilon(\lambda) \rightarrow 0$ as $\lambda \rightarrow 0$. Our results rely essentially only on a simple assumption about the analyticity of the Bethe-Salpeter kernel which has been verified for weak coupling. For the interaction $\lambda \phi^{4},\left(\lambda / m_{0}^{2} \ll 1\right)$ we show that there are no even bound states of energy less than $4(m-\varepsilon)$.

Introduction

We investigate the energy-momentum spectrum for even $\lambda \mathscr{P}(\phi)_{2}$ models via the Euclidean Bethe-Salpeter equation. Let $P=\left(P^{0}, P^{1}\right)$ be the energy-momentum operator acting on the Hilbert space of states \mathscr{H} and define $\Omega \in \mathscr{H}$ to be the vacuum. The first results concerning the spectrum of P were established by Glimm et al. [1,2]. By using a weak coupling cluster expansion, they showed that the closure of the span of

$$
\Omega, e^{i x^{0} P^{0}} \phi_{0}\left(f_{1}\right) \Omega, \ldots, e^{i x^{0} P^{0}} \prod_{i}^{N} \phi_{0}\left(f_{i}\right) \Omega, f_{i} \in C_{0}^{\infty}(\mathbb{R})
$$

contains all states of energy less than $(N+1)(m-\varepsilon)$ for λ (depending on $N)$ sufficiently small. Here $\varepsilon(\lambda) \rightarrow 0$ as $\lambda \rightarrow 0$ and $\phi_{0}\left(f_{i}\right)$ denotes the time zero field smeared with f_{i}. It was also shown that for even \mathscr{P} the mass operator restricted to the odd subspace of \mathscr{H} has exactly one eigenvalue m on the interval $[0,3(m-\varepsilon)]$. As a result the Haag-Ruelle theory [3] yields the existence of an isometric S matrix. It has recently been shown that $S \neq 1$ and is asymptotic in $\lambda[4,5,13]$. For the special case of $\lambda \phi^{4}$, bound states of energy less than $2 m$ were excluded by using correlation inequalities [2].

[^0]
[^0]: * Work supported in part by NSF, Grant MPS 74-13252
 ** Present address: Istituto matematico G. Castelnuovo, Università di Roma, I-00185 Roma, Italy

