Commun. math. Phys. 47, 229-231 (1976)

On the Four-Valuedness of Twistors

C. J. S. Clarke

Department of Mathematics, University of York, Heslington, York Y01 5DD, England

Abstract. The spinors on compactified Minkowski space, in terms of which twistor theory is formulated, are really *U*-spinors. In this light zero-mass fields have no Grgin discontinuity.

I shall examine the spinors which are induced on compactified Minkowsky space, M^c , by twistors. The notation will follow [3], to which the reader is referred for the basic facts of twistor theory. Note in particular that I shall mainly be using *concrete* indices¹, since the abstract index notation of [4] presupposes the existence of some particular spin structure; and it is precisely this that I wish to explore.

If Z and W are two twistors with components $(Z^{\alpha}) = (\eta^{\mathfrak{A}}, \iota_{\mathfrak{X}}), (W^{\alpha}) = (\xi^{\mathfrak{A}}, \sigma_{\mathfrak{X}}),$ then they determine the point x(Z, W) in Minkowski space M whose components are

$$x^{\mathfrak{a}} = -i\sigma^{\mathfrak{a}\mathfrak{A}\mathfrak{K}'}(\eta_{\mathfrak{A}}\sigma_{\mathfrak{K}'} - \xi_{\mathfrak{A}}\iota_{\mathfrak{K}'})/\iota_{\mathfrak{Y}'}\sigma^{\mathfrak{Y}'}, \qquad (1)$$

provided that $\iota_{\mathfrak{Y}'}\sigma^{\mathfrak{Y}'} \neq 0$. Then an element g of the twistor transformation group SU (2, 2) [5] determines a local conformal transformation \tilde{g} on M by

$$\tilde{g}(x(Z, W)) = x(g(Z), g(W)),$$

in a domain where both sides are defined.

The two pairs of numbers which make up the components of a twistor are interpreted on M as the components of spinors with respect to a fixed coordinate basis. Not only are they related to vectors by (1), but for any Poincaré transformation \tilde{g} on M one can find a g which acts on these twistor components in the way appropriate to the spinor interpretation. Moreover, this action extends to conformal transformations, under which the $\iota_{\mathbf{x}'}$ and $\eta^{\mathfrak{A}}$ transform as the components of spinors on M of conformal weight 1 (i.e. under dilatation by a factor θ they acquire a factor θ^{-1}). Hence they are describable in terms of the conformal metric alone, and so can be defined on the image of M in M^c . However, it is well known ([3],

¹ For typographical reasons concrete twistor indices are represented by α , β etc., instead of the Hebrew of [3].