Commun. math. Phys. 47, 155-166 (1976)

Cluster Properties of Lattice and Continuous Systems

M. Duneau and B. Souillard

Centre de Physique Théorique*, Ecole Polytechnique, F-91120 Palaiseau, France

Abstract. Various strong decay properties are proved for lattice systems with general *n*-body interactions, and for continuous systems with two-body and *n*-body interactions. The range of the potentials is finite or infinite.

I. Introduction

1. *Definitions* [1, 2]:

We say that the truncated correlation functions ϱ_A^T satisfy a strong cluster property (S.C.P.) if there exists a real integrable function U of the configuration space \mathbb{R}^{ν} or \mathbb{Z}^{ν} such that for any configuration X (except perhaps a set of zero measure):

$$|\varrho_A^T(X)| \le A \sum_{T \in \mathfrak{T}(X)} \prod_{(x, x') \in T} U(x, x')$$
(1)

where the sum \sum runs over all trees T on X (i.e. connected graphs without closed loop), and the product runs over all lines (x, x') of the tree T; A and U are independent of the box Λ , of X and of the number of points |X| of X, but depend on the potential Φ (including here the reciprocal temperature β) and on the activity z.

In the case of a lattice system, an equivalent formulation of S.C.P. can be given (for equivalence see Appendix).

$$|\varrho_{\mathcal{A}}^{T}(X)| \leq A C^{|X|} \Re(X) e^{-L_{\delta}(X)}$$
⁽²⁾

where $\Re(X)$ is a numerical factor equal to $N_1 ! ... N_p$! when the points of X occupy only p different positions occuring respectively $N_1, ..., N_p$ times, C is a constant and $L_{\delta}(X)$ is the shortest length with respect to some distance δ of all the trees constructed on the points of X and arbitrary other points (for example $\delta(x, x') =$ $\chi |x - x'|$ or $\delta(x, x') = s \log(1 + \alpha |x - x'|), s > v$), with $e^{-\delta(x, x')}$ integrable with respect to x'; A, C, and δ are again independent of A, X, and |X| but depend on Φ and z.

Moreover the truncated correlations ϱ_A^T are said to satisfy a strong decrease property (S.D.P.) if a bound of the type (1) holds, with a function U(x-x') which is not integrable, or (2) with $s \leq v$ or with a further multiplicative factor worse than $C^{|X|}$ (for instance |X|!).

In a large number of situations with two-body potentials, S.C.P. have been proved [2, 3] to be equivalent to analyticity with respect to the activities (plus

^{*} Equipe de Recherche du C.N.R.S. 174.