Commun. math. Phys. 47, 25-32 (1976)

Dissipations and Derivations

A. Kishimoto

Department of Physics, Kyoto University, Kyoto, Japan

Abstract. We show a usefulness of the notion of "dissipative operators" in the study of derivations of C^* -algebras and prove that the closure of a normal *-derivation of UHF algebra satisfying a special condition is a generator of a one-parameter group of *-automorphisms.

§ 1. Introduction

Recently various authors have studied unbounded derivations of C^* -algebras [2–4, 6, 7, 10, 11, 13]. In particular Powers and Sakai [10] have studied unbounded derivations of UHF algebra.

The purpose of the present note is to show a usefulness of the notion of "dissipative operators" [9, 17] in the study of derivations of C^* -algebras.

Our first result is that an everywhere defined "dissipation" is bounded, which implies the well-known theorem concerning derivations [5, 12].

Our second result is about a normal *-derivation of UHF algebra satisfying a special condition discussed in [1, 10, 14, 15]. For such a *-derivation, we prove that its closure is a generator of a one-parameter group of *-automorphisms. As its application we consider one-dimensional lattice system.

§ 2. Bounded Derivation

Let \mathfrak{A} be a Banach space. For each $x \in \mathfrak{A}$ there is at least one non-zero element f of the dual Banach space \mathfrak{A}^* such that $\langle x, f \rangle = ||x|| \cdot ||f||$ by the Hahn-Banach theorem. An f_x denotes one of them throughout this note.

Definition 1. [9] A linear map γ with domain $\mathcal{D}(\gamma)$ in a Banach space is called dissipative if there is an f_x such that

 $\operatorname{Re}\langle\gamma x, f_x\rangle \leq 0$

for each $x \in \mathcal{D}(\gamma)$.

Definition 2. A linear map δ with domain $\mathscr{D}(\delta)$ in a Banach space is called derivative if there is an f_x such that

 $\operatorname{Re}\langle \delta x, f_x \rangle = 0$

for each $x \in \mathcal{D}(\delta)$.

Let \mathfrak{A} be a C*-algebra. A linear map δ of \mathfrak{A} is called a derivation if it satisfies

 $\delta(xy) = \delta(x)y + x\delta(y)$