© by Springer-Verlag 1976

Ferromagnetic Spin Systems at Low Temperatures

J. Slawny*

Joseph Henry Laboratories of Physics, Princeton University, Princeton, New Jersey 08540, USA

Abstract. Finite-spin systems with ferromagnetic, finite range interactions are considered. Using Ruelle's theorem on zeros of polynomials contracted according to Asano, analyticity of pressure and correlation functions is proved. A description of all translation invariant equilibrium states at low temperatures for a large class of systems is given.

Introduction

We develop here further the technique of [13, 14]. In combination with the results of [6] it allows us to complete a picture of classical spin systems with ferromagnetic interactions at low temperatures.

If J is any finite range ferromagnetic interaction one associates with it a family $\mathfrak{A}(J)$ of functions on the configuration space and proves that for low enough temperatures all translation invariant equilibrium states agree on elements of this family.

Furthermore, the symmetriy group \mathscr{S} is introduced. It acts on the configuration space of the system by flipping spins at lattice sites in such a way that leaves the energy invariant. Let, for $G \in \mathscr{S}$, ϱ_G^+ be the (equilibrium) state $f \mapsto \varrho^+(f \circ G)^1$, and for any probability measure μ on \mathscr{S} let

$$\varrho_{\mu} = \int_{\mathscr{S}} \varrho_{G}^{+} \mu(dG) \,. \tag{0.1}$$

The group $\mathcal{G}(J)$ and the family $\mathfrak{A}(J)$ are closely related: the closed linear span of $\mathfrak{A}(J)$ consists exactly of all \mathcal{G} -invariant functions. From the uniqueness on $\mathfrak{A}(J)$ we weduce — this is our main result — that for any ferromagnetic spin system with finite range interaction all \mathbb{Z}^{ν} -invariant equilibrium states at low enough temperature have the integral representation (0.1).

The representation is made unique by intergrating over $\mathscr{G}/\mathscr{G}^+$ instead of \mathscr{G} where \mathscr{G}^+ is the isotropy subgroup of ϱ^+ . \mathbb{Z}^{ν} acts on $\mathscr{G}/\mathscr{G}^+$ in a natural way, and ϱ_{μ} is \mathbb{Z}^{ν} -invariant iff μ is, ϱ_{μ} is ergodic iff μ is. Thus the description of all invariant equilibrium states at low temperatures is reduced, in a sense, to finding $\mathscr{G}/\mathscr{G}^+$

^{*} Research supported in part by AFOSR F 44620 71-C-0108 and by US NSF Grant GP 39048.

¹ ϱ^+ is the equilibrium state defined by fixing the maximal spin outside Λ and letting $\Lambda \nearrow \infty$, Section 2.1.