Commun. math. Phys. 46, 31-35 (1976)

Unbounded Derivations and Invariant Trace States

Ola Bratteli* **

Centre de Physique Théorique, CNRS Marseille, F-13274 Marseille Cedex 2, France

Derek W. Robinson

Université d'Aix-Marseille II, U.E.R. de Luminy and Centre de Physique Théorique, CNRS Marseille, F-13274 Marseille Cedex 2, France

Abstract. Let \mathfrak{M} be a von Neumann algebra with cyclic trace vector Ω . Let $\delta(A) = i[H, A]$ be a spatial derivation of \mathfrak{M} implemented by an operator H such that $H\Omega = 0$ and H is essentially self-adjoint on $D(\delta)\Omega$. It follows that:

 $e^{itH}\mathfrak{M}e^{-itH}=\mathfrak{M}, \quad t\in\mathbb{R}.$

1. Introduction

In a previous paper [1] we discussed the general theory of unbounded derivations of a von Neumann algebra \mathfrak{M} on a Hilbert space \mathscr{H} and, in particular, introduced the notion of a spatial derivation. This latter form of derivation is defined in terms of a symmetric operator H, on \mathscr{H} , and a weakly dense *-subalgebra $D(\delta)$ of \mathfrak{M} , which leaves the domain D(H) of H invariant. The derivation δ is defined to be a mapping

 $A \in D(\delta) \rightarrow \delta(A) \in \mathfrak{M}$

with the property that

 $\delta(A)\psi = i[H, A]\psi, \quad \psi \in D(H).$

It is of particular interest to study the case that H is self-adjoint and has an eigenvector Ω such that $D(\delta)\Omega$ is a core of H. In [1] it was conjectured that if Ω is also cyclic and separating for \mathfrak{M} then

 $e^{itH}\mathfrak{M}e^{-itH}=\mathfrak{M}, \quad t\in\mathbb{R}.$

This conjecture was verified in various special cases. If \mathfrak{M} is abelian then it is essentially a theorem of Gallavotti and Pulvirenti [2]. In this note we extend the abelian result by verifying the conjecture whenever Ω is a trace vector.

2. Main Theorem

Theorem 1. Let \mathfrak{M} be a von Neumann algebra on a Hilbert space \mathscr{H} and let Ω be a cyclic normalized vector defining a trace on \mathfrak{M} , i.e.

 $(\Omega, AB\Omega) = (\Omega, BA\Omega), \quad A, B \in \mathfrak{M}.$

* Supported by the Norwegian Research Council for Science and Humanities.

^{**} Present address: ZIF der Universität Bielefeld, D-4800 Bielefeld, Federal Republic of Germany