Commun. math. Phys. 46, 11-30 (1976)

Unbounded Derivations of C*-Algebras II

Ola Bratteli*

Centre de Physique Théorique, CNRS Marseille, F-13274 Marseille Cedex 2, France

Derek W. Robinson**

Université d'Aix-Marseille II, Luminy, Marseille, Centre de Physique Théorique, CNRS, Marseille, France and the Depts. of Mathematics and Physics, University of California, Berkeley, California, USA

Abstract. It is demonstrated that a closed symmetric derivation δ of a C^{*}-algebra \mathfrak{A} generates a strongly continuous one-parameter group of automorphisms of a C^{*}-algebra \mathfrak{A} if and only if, it satisfies one of the following three conditions

1. $(\alpha\delta + 1)(D(\delta)) = \mathfrak{A}, \alpha \in \mathbb{R} \setminus \{0\}.$

2. δ possesses a dense set of analytic elements.

3. δ possesses a dense set of geometric elements.

Together with one of the following two conditions

1. $\|(\alpha\delta+1)(A)\| \ge \|A\|, \alpha \in \mathbb{R}, A \in D(\delta).$

2. If $\alpha \in \mathbb{R}$ and $A \in D(\delta)$ then $(\alpha \delta + 1)(A) \ge 0$ implies $A \ge 0$.

Other characterizations are given in terms of invariant states and the invariance of $D(\delta)$ under the square root operation of positive elements.

1. Introduction

A derivation δ of a C*-algebra \mathfrak{A} is defined to be a linear mapping from a dense *-subalgebra $D(\delta) \subseteq \mathfrak{A}$, the domain of δ , to a subspace $R(\delta) \subseteq \mathfrak{A}$, the range of δ , satisfying the property

 $\delta(AB) = \delta(A)B + A\delta(B), \quad A, B \in D(\delta).$

A derivation of this type is called symmetric if

 $\delta(A)^* = \delta(A^*), \qquad A \in D(\delta) \; .$

A general derivation δ always has a decomposition

 $\delta = \delta_1 + i\delta_2$

in terms of symmetric derivations.

^{*} Supported by the Norwegian Research Council for Science and Humanities.

^{**} Work supported in part by the National Science Foundation under Grant No. GP-42249X.