Convergence of the Diagonal Operator-valued Padé Approximants to the Dyson Expansion

F. J. Narcowich and G. D. Allen
Department of Mathematics, Texas A \& M University, College Station, Texas 77843, USA

Abstract

The diagonal operator-valued Padé approximants formed from the Dyson expansion to the Schrödinger time-evolution operator are shown to converge everywhere in the complex plane, except on a certain subset of the real axis.

The purpose of this paper is to outline a proof of the convergence of the diagonal operator-valued Padé approximants (O.P.A.) formed from the Dyson expansion for the non-relativistic time-evolution operator. This will be carried out by showing that the Dyson expansion belongs to a broad class of operatorvalued analytic functions for which the diagonal O.P.A.'s converge.

Let $U(t, z)$ be the time-evolution operator which solves the Schrödinger equation,

$$
\begin{align*}
i \frac{d}{d t} U(t, z) & =\left[H_{0}-z V(t)\right] U(t, z) \\
U(0, z) & =I \tag{1}
\end{align*}
$$

where $V(t)$ is a bounded, positive-definite operator for all time t and H_{0} is an unperturbed Hamiltonian. It is known [1] that $U(t, z)$ is an entire function of the coupling constant z and that the Dyson expansion [2],

$$
\begin{equation*}
U(t, z)=\sum_{l=0}^{\infty} U_{l}(t) z^{l}, \tag{2}
\end{equation*}
$$

converges for all complex z. There are two difficulties concerning this expansion. First of all, for z real, the truncated power series is unitary only to some finite order; secondly, the series may be slowly convergent. On the other hand, Padé approximation techniques can be used to resolve both of these difficulties. In general, the Padé approximants to a series, when they do converge, converge more rapidly than the partial sums; and, in the case of the diagonal ($[N / N]$) approximants, they preserve the unitary character of the operator (cf. ZinnJustin, Ref. [3]).

Operator-valued Padé approximants are defined analogously to scalar Padé approximants: Let $A(z)$ be a bounded operator-valued function analytic in a neighborhood of the origin and having the power series expansion

$$
A(z)=\sum_{l=0}^{\infty} A_{l} z^{l} .
$$

