© by Springer-Verlag 1975

Extremal Decomposition of Wightman Functions and of States on Nuclear *-Algebras by Choquet Theory

Gerhard C. Hegerfeldt

Institut für Theoretische Physik, Universität Göttingen, D-3400 Göttingen, Federal Republic of Germany

Abstract. We give a short proof for the decomposability of states on nuclear *-algebras into extremal states by using the integral decompositions of Choquet and the nuclear spectral theorem, recovering a recent result by Borchers and Yngvason. The decomposition of Wightman fields into irreducible fields is a special case of this. We also indicate a quick solution of the moment problem on nuclear spaces.

Recently, Borchers and Yngvason [1] developed an extension theory for *-algebras of unbounded operators and applied it to the extremal decomposition of states ¹ on nuclear *-algebras. The Choquet theory of extremal decompositions on cones [3] seemed to be not applicable; for the Borchers algebra $\mathcal L$ of test functions this has been discussed in [1] and [13]. In this paper we bypass the difficulty in a very simple way by going over to a larger cone to which Choquet theory can be applied ² and then use nuclearity via the nuclear spectral theorem [5, 8].

Theorem [1]. Let $\mathfrak A$ be a nuclear *-algebra with unit element, and let T be a state on $\mathfrak A$ such that $x\mapsto T(x^*x)$ is continuous³. Then there is a standard measure space⁴ Z, a weakly measurable map $\zeta\to T_\zeta$ of Z to extremal states on $\mathfrak A$ and a positive measure ϱ on Z with $\varrho(Z)=1$ such that

$$T = \int_{Z} T_{\zeta} d\varrho(\zeta) . \tag{1}$$

The main idea is to use the following observation.

Lemma. Let \mathfrak{A}_0 , a *-algebra with unit, be the finite linear span of a countable set of elements. Then \mathfrak{A}_{0+}^* , the positive cone in the algebraic dual \mathfrak{A}_0^* equipped with the weak topology, is proper, metrizable and weakly complete.

Proof. The topology of \mathfrak{A}_0^* is given by a countable family of semi-norms and thus metrizable. Since \mathfrak{A}_0^* contains all linear functionals on \mathfrak{A}_0 , \mathfrak{A}_0^* and \mathfrak{A}_{0+}^* are weakly complete. \mathfrak{A}_{0+}^* is proper since \mathfrak{A}_{0+} contains the unit. QED.

States are positive continuous linear functionals which are 1 on the unit element.

A similar idea has been used before by the author in [6, 7].

³ This means that the associated representation is strongly continuous. In most cases this is automatically implied by the continuity of T, e.g. for the Borchers algebra $\mathscr L$ of test functions.

One can assume Z = [0, 1]; cf. [4], B 20.