# Two and Three Body Equations in Quantum Field Models* 

James Glimm**<br>Rockefeller University, New York, N.Y. 10021, USA<br>Arthur Jaffe***<br>Harvard University, Cambridge, Mass. 02138, USA

Received December 27, 1974


#### Abstract

In each pure phase of a $\mathscr{P}(\phi)_{2}$ quantum field model, we establish local regularity of the Green's functions and exponential decay for noncritical models. We establish the existence of twoparticle and three-particle Bethe-Salpeter kernels in the Euclidean region.


## Contents

1. Introduction ..... 293
2. $\phi^{j}$ Bounds and Schwinger Functions ..... 296
3.1. Integration by Parts ..... 302
3.2. Green's Functions and Graphs ..... 304
3. Regularity of the Green's Functions ..... 305
4. The Support of $d q$. ..... 308
5. Decay of $\Gamma^{(2)}(x)$ and CDD Zeros ..... 311
6. The Two-Particle Bethe-Salpeter Kernel ..... 314
7. Three Particle Equations . ..... 316

## 1. Introduction

The study of particles in weakly coupled $\mathscr{P}(\phi)_{2}$ quantum field theories was begun in $[25,26]$. The cluster expansions developed in these papers resulted in the construction of isolated one-particle states. According to the Haag-Ruelle theory, the existence of $n$-particle in and out states, and the existence of an isometric $S$-matrix, follow from the existence of isolated one particle states. The $\phi^{4}$ model, in the single phase region, has been shown to be repulsive in the sense that no even mass spectrum occurs in the two particle bound state interval ( $m, 2 m$ ) [46, 8,25$]$. The presence of bound state mass spectrum was indicated for the $\phi^{6}-\phi^{4}$ interaction [25]. Spencer [47] and Spencer and Zirilli [48] have a more detailed analysis of the energy momentum spectrum for weak coupling, which goes up to the threshold $E \leqq 3 m-\varepsilon$, and uses the Bethe-Salpeter equation. An early version of their work motivated the present paper.

[^0]
[^0]:    * We thank the Institut des Hautes Etudes Scientifiques for hospitality.
    ** Supported in part by the National Science Foundation under Grant MPS 74-13252.
    *** Supported in part by the National Science Foundation under Grant MPS 73-05037.

