Commun. math. Phys. 44, 279–292 (1975) (1975) (1975) (1975) (1975) (1975)

A C*-Algebra of the Two-dimensional Ising Model

J. T. Lewis

Institute for Advanced Studies, Dublin 4, Ireland

P. N. M. Sisson

University of Leuven, Leuven, Belgium

Received February 15, 1975

Abstract. We consider the two-dimensional Ising model and show how correlation functions are determined by a state of a C^* -Clifford algebra. We describe how the phase transition manifests itself in terms of a jump in the index of a Fredholm operator. A connection with the Pfaffian approach is made through the theory of unitary dilations of contraction semigroups.

§1. Introduction

The two-dimensional Ising model in zero field has been treated algebraically by many authors, notably Onsager [20], Kaufmann [11], Schultz, Mattis, and Lieb [23], Abraham [1, 2], Abraham and Martin-Löf [3]. They consider an array of spins on a finite lattice, compute correlations using either the Clifford algebra [1, 3, 11] or the Fermi algebra [2, 23] and then pass to the thermodynamic limit. Following Pirogov [22] we consider the Clifford and Fermi algebras associated with the infinite lattice. Other *C**-algebras associated with the Ising model are described by Marinaro and Sewell [16].

We investigate the connection between the Gibbs states of the Ising system and certain states of the Clifford algebra. In this we follow Dobrushin [5] and Landford and Ruelle [12] and regard a Gibbs' state of the infinite system as a family of correlations $\langle \sigma_a ... \sigma_{a_n} \rangle$ for finite subsets $\{a_1, ..., a_n\}$ of the lattice, σ_a taking on values ± 1 . These are obtained as the limit of correlation functions for a sequence of finite sublattices with some prescribed boundary conditions. In particular we denote by $\langle ... \rangle^p$, $\langle ... \rangle^+$ and $\langle ... \rangle^-$ the correlation functions which arise from the periodic, "plus" and "minus" boundary conditions respectively. For a review of boundary conditions and general properties of Ising systems see Gallavotti [7]. The state is translationally invariant if $\langle \sigma_{a_1+a}...\sigma_{a_n+a} \rangle =$ $\langle \sigma_{a_1}...\sigma_{a_n} \rangle$ for all lattice vectors $a \in Z^2$ and all subsets $\{a_1, ..., a_n\}$. The set of all translationally invariant equilibrium states is a non-empty convex space. A phase transition is said to occur at inverse temperature β_c if for $\beta > \beta_c$ there is more than one equilibrium state while for $\beta < \beta_c$ a unique state exists. Extending a result of Gallavotti and Miracle-Sole [8], Messager and Miracle-Sole [17] have shown that every translationally invariant equilibrium state $\langle .. \rangle$ is such that

$$\langle \cdot \rangle = \alpha \langle \cdot \rangle^+ + (1 - \alpha) \langle \cdot \rangle^- \quad \text{for some} \quad \alpha \in [0, 1].$$
 (1)