On Uniqueness of KMS States of One-dimensional Quantum Lattice Systems

Huzihiro Araki*
Institut für Theoretische Physik der Universität, Göttingen, Federal Republic of Germany

Received May 17, 1975

Abstract

Uniqueness of KMS states is proved for one-dimensional quantum lattice system. Sakai's theorem on uniqueness of KMS states is generalized to cases of non-commutative generators.

§ 1. Introduction

Uniqueness of equilibrium states for one-dimensional lattice system has been proved by Ruelle [7] for classical interactions and by Araki [1] for quantum interactions with a finite-range interaction. Simpler proofs have since been given for these cases (for example, see [8]. Also see Theorem 2 in [5]). It amounts to showing that any two states φ_{1} and φ_{2} satisfying the KMS condition are majorized by each other: $\varphi_{1} \leqq \lambda \varphi_{2} \leqq \lambda^{2} \varphi_{1}$ for some $\lambda>0$.

We present here a proof of the uniqueness for one-dimensional quantum lattice system with an interaction Φ, which satisfies the same type of condition as known classical cases, namely surface energy has a bound independent of the volume. The key argument in the proof is Lemma 2 which states roughly that if the relative entropy of a state φ_{1} with respect to a state φ_{2} is finite, then the associated representation π_{1} quasi-contains π_{2}.

To state the result more precisely, we use the following notation: The C^{*}-algebra \mathfrak{A} under investigation will have the following structure as usual: For each integer v, \mathfrak{Z} has a subalgebra \mathfrak{A}_{v} mutually commuting for different v. For any subset I of the set Z of all integers, $\mathfrak{M}(I)$ denotes the C^{*}-subalgebra of \mathfrak{A} generated by $\mathfrak{A}_{v}, v \in I$. We assume that each \mathfrak{A}_{v} is a type I finite factor and $\mathfrak{A}(Z)=\mathfrak{A}$. For each finite subset Λ of Z, an interaction potential $\Phi(\Lambda) \in \mathfrak{H}(\Lambda)$ is given such that
(0) $\Phi(\emptyset)=0$,
(1) $\|\Phi\|_{\alpha} \equiv \sup _{v} \sum_{A}\left\{e^{\alpha N(1)}\|\Phi(\Lambda)\| ; v \in \Lambda\right\}<\infty$,
where $N(\Lambda)$ denotes the number of points in Λ and $\alpha>0$,
(2) the following element $W\left(\Lambda_{n}\right)$ of \mathfrak{A} for an increasing sequence of finite subsets Λ_{n} of Z is bounded in norm uniformly in n :

$$
\begin{equation*}
W(A) \equiv \sum_{J}\left\{\Phi(J) ; J \subset \subset, J \cap A \neq \emptyset, J \cap \Lambda^{\text {c }} \neq \emptyset\right\} . \tag{1.1}
\end{equation*}
$$

Here Λ^{c} denotes the complement of Λ in Z and CC denotes a finite subset.

[^0]
[^0]: * On leave from Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606, Japan.

