Commun. math. Phys. 44, 1—7 (1975) © by Springer-Verlag 1975

On Uniqueness of KMS States of One-dimensional Quantum Lattice Systems

Huzihiro Araki*

Institut für Theoretische Physik der Universität, Göttingen, Federal Republic of Germany

Received May 17, 1975

Abstract. Uniqueness of KMS states is proved for one-dimensional quantum lattice system. Sakai's theorem on uniqueness of KMS states is generalized to cases of non-commutative generators.

§ 1. Introduction

Uniqueness of equilibrium states for one-dimensional lattice system has been proved by Ruelle [7] for classical interactions and by Araki [1] for quantum interactions with a finite-range interaction. Simpler proofs have since been given for these cases (for example, see [8]. Also see Theorem 2 in [5]). It amounts to showing that any two states φ_1 and φ_2 satisfying the KMS condition are majorized by each other: $\varphi_1 \leq \lambda \varphi_2 \leq \lambda^2 \varphi_1$ for some $\lambda > 0$.

We present here a proof of the uniqueness for one-dimensional quantum lattice system with an interaction Φ , which satisfies the same type of condition as known classical cases, namely surface energy has a bound independent of the volume. The key argument in the proof is Lemma 2 which states roughly that if the relative entropy of a state φ_1 with respect to a state φ_2 is finite, then the associated representation π_1 quasi-contains π_2 .

To state the result more precisely, we use the following notation: The C*-algebra \mathfrak{A} under investigation will have the following structure as usual: For each integer v, \mathfrak{A} has a subalgebra \mathfrak{A}_v mutually commuting for different v. For any subset I of the set Z of all integers, $\mathfrak{A}(I)$ denotes the C*-subalgebra of \mathfrak{A} generated by $\mathfrak{A}_v, v \in I$. We assume that each \mathfrak{A}_v is a type I finite factor and $\mathfrak{A}(Z) = \mathfrak{A}$. For each finite subset Λ of Z, an interaction potential $\Phi(\Lambda) \in \mathfrak{A}(\Lambda)$ is given such that

$$(0) \quad \Phi(\emptyset) = 0 \, ,$$

(1)
$$\|\Phi\|_{\alpha} \equiv \sup \sum_{\Lambda} \{e^{\alpha N(\Lambda)} \|\Phi(\Lambda)\|; v \in \Lambda\} < \infty$$
,

where $N(\Lambda)$ denotes the number of points in Λ and $\alpha > 0$,

(2) the following element $W(\Lambda_n)$ of \mathfrak{A} for an increasing sequence of finite subsets Λ_n of Z is bounded in norm uniformly in n:

$$W(\Lambda) \equiv \sum_{J} \{ \Phi(J); J \subset \mathbb{Z}, J \cap \Lambda \neq \emptyset, J \cap \Lambda^{c} \neq \emptyset \}.$$

$$(1.1)$$

Here Λ^{c} denotes the complement of Λ in Z and \subset denotes a finite subset.

^{*} On leave from Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606, Japan.